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Summary10

Today’s increased availability of large amounts of human behavioral data and advances in Artificial11

Intelligence are contributing to a growing reliance on algorithms to make consequential decisions12

for humans, including those related to access to credit or medical treatments, hiring, etc. Algo-13

rithmic decision-making processes might lead to more objective decisions than those made by14

humans who may be influenced by prejudice, conflicts of interest, or fatigue. However, algorithmic15

decision-making has been criticized for its potential to lead to privacy invasion, information asym-16

metry, opacity, and discrimination. In this paper, we describe available technical solutions in three17

large areas that we consider to be of critical importance to achieve a human-centric AI: (1) pri-18

vacy and data ownership; (2) accountability and transparency; and (3) fairness. We also highlight19

the criticality and urgency to engage multi-disciplinary teams of researchers, practitioners, policy20

makers, and citizens to co-develop and evaluate in the real-world algorithmic decision-making pro-21

cesses designed to maximize fairness, accountability and transparency while respecting privacy.22

Introduction23

Nowadays, the large-scale availability of human behavioral data and the increased capabilities of24

Artificial Intelligence (AI) are enabling researchers, companies, practitioners and governments to25

leverage machine learning algorithms to address important problems in our societies (Gillespie26

2014, Willson 2017). Notable examples are the use of algorithms to estimate and monitor socio-27

economic conditions (Eagle et al. 2010, Soto et al. 2011, Blumenstock et al. 2015, Venerandi et al.28

2015, Steele et al. 2017) and well-being (Hillebrand et al. 2020), to map the spread of infectious29
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diseases (i.e. influenza, malaria, dengue, zika and more recently SARS-CoV-2) (Ginsberg et al.30

2009, Wesolowski et al. 2012, 2015, Zhang et al. 2017, Jia et al. 2020, Lai et al. 2020), and to31

quantify the impact of natural disasters (Ofli et al. 2016, Pastor-Escuredo et al. 2014, Wilson et al.32

2016).33

Moreover, machine learning algorithms are increasingly used to support humans or even au-34

tonomously make decisions with significant impact in people’s lives. The main motivation for the35

use of technology in these scenarios is to overcome the shortcomings of human decision-making.36

In the last decades, several studies in psychology and behavioral economics have highlighted the37

significant limitations and biases characterizing the human decision-making process (Tverksy &38

Kahnemann 1974, Samuelson & Zeckhauser 1988, Fiske 1998). Compared to humans, there are39

advantages that can hardly be denied in the use of machine learning algorithms: they can perform40

tasks in a shorter amount of time, they are able to process significantly larger amounts of data41

than humans can, they don’t get tired, hungry, or bored and they are not susceptible to corruption42

or conflicts of interest (Danziger et al. 2011). Furthermore, the increasing tendency in adopting43

algorithms can be seen as an answer to the request of a greater objectivity and reduced error in44

decisions. Thus, it is no suprise to see a growth in the use of machine learning-based systems45

to decide whether an individual is credit worthy enough to receive a loan (Kleinberg et al. 2017),46

to identify the best candidates to be hired for a job (Siting et al. 2012, Raghavan et al. 2020) or47

to be enrolled in a specific university (Marcinkowski et al. 2020), to predict if a convict individual48

is inclined to re-offend (Berk et al. 2018), to recommend products or content (including news) to49

consume (Jannach & Adomavicius 2016, Noble 2018, Oyebode & Orji 2020), and so on.50

However, researchers from different disciplinary backgrounds and activists have identified a range51

of social, ethical and legal issues associated with the use of machine learning in decision-making52

processes, including violations of individuals’ privacy (Crawford & Schultz 2014, de Montjoye, Hi-53

dalgo, Verleysen & Blondel 2013, de Montjoye et al. 2015, Ohm 2010), lack of transparency and54

accountability (Citron & Pasquale 2014, Pasquale 2015, Zarsky 2016), and biases and discrimina-55

tion (Barocas & Selbst 2016, Eubanks 2018, Noble 2018, Benjamin 2019). For example, Barocas56

and Selbst (Barocas & Selbst 2016) have shown that the use of AI-driven decision-making pro-57

cesses could result in disproportionate adverse outcomes for disadvantaged groups (e.g. minori-58

ties, individuals with lower income, etc.). In 2016, the non-profit organization ProPublica analyzed59

the performance of the COMPAS Recidivism Algorithm, a tool used to inform criminal sentencing60

decisions by predicting recidivism (Angwin et al. 2016). The results of the conducted analysis61

found that COMPAS was significantly more likely to label black defendants than white defendants62

as potential repeat offenders, despite similar rates of prediction accuracy between the two groups63

(Angwin et al. 2016). More recently, Obermeyer et al. (Obermeyer et al. 2019) have shown that64
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an algorithm widely used in the health system exhibits a racial bias. Specifically, for a given risk65

score this algorithm labels black patients as significantly sicker than white patients. As authors66

pointed out the racial bias arises because the algorithm is predicting health care costs rather than67

the health status of the individual.68

As a consequence, national governments and international organizations (e.g. the European Com-69

mission and the European Parliament, the Organisation for Economic Cooperation and Develop-70

ment, etc.), major tech companies (e.g. Google, Amazon, Facebook, Microsoft, IBM, SAP, etc.),71

and professional and non-profit organizations (e.g. Association for Computing Machinery, Institute72

of Electrical and Electronics Engineers, World Economic Forum, Amnesty International, etc.) have73

recently responded to these concerns by extablishing ad-hoc initiatives and committees of experts.74

These initiatives and committees have produced reports and guidelines for an ethical AI. In a re-75

cent paper, Jobin et al. (Jobin et al. 2019) have analyzed these guidelines showing that a global76

convergence is emerging around five ethical principles, namely transparency, justice and fairness,77

non-maleficence, responsibility, and privacy.78

Similarly, the human-computer interaction (HCI) research community has proposed, for over two79

decades, principles and guidelines for the design of an effective human interaction with AI sys-80

tems (Norman 1994, Horvitz 1999, Parise et al. 1999, Sheridan & Parasuraman 2005, Lim et al.81

2009). Nowadays, this debate is becoming more and more relevant given the growing use of AI82

systems in decision-making processes (Lee et al. 2015, Abdul et al. 2018, Amershi et al. 2019,83

Wang et al. 2019). In a recent paper, Amershi et al. (Amershi et al. 2019) have sistematically84

validated a large number of applicable guidelines for designing the interaction between humans85

and AI systems. Examples of these guidelines (Amershi et al. 2019) are (i) making clear what the86

system can do and (ii) how well, (iii) supporting an efficient correction of the system’s errors and87

(iv) an efficient dismissal of undesired AI system’s services, (v) mitigating the social biases and (vi)88

matching relevant social norms, and so on. Along this line, Abdul et al. (Abdul et al. 2018) have89

performed a literature analysis of HCI core papers on explainable systems as well as of related90

papers from other fields in computer science and cognitive psychology. Their analysis (Abdul et al.91

2018) revealed some trends and trajectories for the HCI community in the domain of explainable92

systems, such as the introduction of rule extraction methods in deep learning (Hailesilassie 2016),93

the demand for a systematic accountability of the AI systems (Shneiderman 2016), the exploration94

of interactive explanations (Patel et al. 2011, Krause et al. 2016), and the relevance of the human95

side of the AI systems’ explanations (Doshi-Velez & Kim 2017, Lipton 2018, Miller 2019).96

In addition, a recent scientific mass collaboration, involving 160 teams worldwide, evaluated the97

effectiveness of machine learning models for predicting several life outcomes (e.g. child grade98

point average, child grit, household eviction, etc.) (Salganik et al. 2020). This work used data99
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from the Fragile Families and Child Wellbeing Study (Reichman et al. 2001). The obtained results100

have shown serious limitations in predicting life outcomes of individuals. Indeed, the best machine101

learning predictions were not very accurate and only slightly better than the ones obtained by sim-102

ple baseline models. Therefore, the authors recommend that policymakers determine whether the103

predictive accuracy, achievable using machine learning approaches, is adequate for the setting104

where the predictions will be used, and whether the machine learning models are significantly105

more accurate than simple statistical analyses or decisions taken by human domain experts (Hand106

2006, Rudin 2019). Moreover, the perception of algorithms’ decisions, regardless of their actual107

performance, may significantly influence people’s trust in and attitudes toward AI-driven decision-108

making processes (Lee & Baykal 2017, Lee 2018). In a recent work, Lee (Lee 2018) conducted109

an online experiment in which study participants read the description of a human or an algorithmic110

managerial decision. These decisions were based on real-world examples of tasks requiring more111

"human" skills (e.g. emotional capability, subjective judgement, etc.) or more "mechanical" skills112

(e.g. processing large amount of data, etc.). The study shows that, with the "mechanical" tasks,113

human-made and algorithmic decisions were perceived as equally trustworthy and fair, whereas,114

with the "human" tasks, the algorithmic decisions were perceived as less trustworthy and fair than115

the human ones. In two qualitative laboratory studies, Lee and Baykal (Lee & Baykal 2017) showed116

that algorithmic decisions in social division tasks (e.g. allocating limited resources to each individ-117

ual) were perceived more unfair than decisions obtained as a result of group discussions. In118

particular, the algorithmic decisions were viewed as unfair when they did not take into account the119

presence of altruism and other aspects related to the group dynamics (Lee & Baykal 2017).120

In this article, we build on our previous work (Lepri et al. 2017, 2018) to first provide a brief com-121

pendium of risks (i.e. privacy violations, lack of transparency and accountability, and discrimination122

and biases) that might arise when consequential decisions impacting people’s lives are based on123

the outcomes of machine learning models. Next, we describe available technical solutions in three124

large areas that we consider to be of critical importance to achieve a human-centric AI: (1) privacy125

and data ownership; (2) transparency and accountability; and (3) fairness in AI-driven decision-126

making processes. We also highlight the criticality and urgency to engage multi-disciplinary teams127

of researchers, practitioners, policy makers and citizens to co-develop, deploy and evaluate in the128

real-world algorithmic decision-making processes designed to maximize fairness, transparency129

and accountability while respecting privacy, thus pushing towards an ethical and human use of Ar-130

tificial Intelligence. Detailed reviews and perspectives on these topics can also be found in several131

recent publications (Pasquale 2015, Mittelstadt et al. 2016, Veale & Binns 2017, Barocas et al.132

2018, Cath et al. 2018, Guidotti et al. 2018, Lipton 2018, Jobin et al. 2019, Brundage et al. 2020,133

Kearns & Roth 2020).134
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Our ultimate goal is to document and highlight recent research efforts to reverse the risks of AI135

when used for decision-making and to offer an optimistic view on how our societies could lever-136

age machine learning decision-making processes to build a Human-centric AI, namely a social137

and technological framework that enhances the abilities of individuals and serves the objectives of138

human development (Letouzé & Pentland 2018). Note that the proposed Human-centric AI frame-139

work has not the pragmatic and utilitarian objective of improving trustworthiness and of avoiding140

improper usage of AI-driven decision-making systems in order to increase their adoption. Instead,141

our envisioned approach has the ambitious goal of building AI systems that preserve human au-142

tonomy, complement the intelligence of individuals, behave transparently and help us to increase143

the fairness and justice in our societies.144

The risks of AI-driven decision-making145

The potential positive impact of AI –namely, machine learning-based approaches– to decision-146

making is huge. However, several risks and limitations of these systems have been highlighted147

in recent years (Crawford & Schultz 2014, Pasquale 2015, Tufekci 2015, Barocas & Selbst 2016,148

O’Neil 2016, Lepri et al. 2017, Barocas et al. 2018, Brundage et al. 2020), including violations of149

people’s privacy, lack of transparency and accountability of the algorithms used, and discrimination150

effects and biases harming the more fragile and disadvantaged individuals in our societies. In this151

section, we turn our attention to these elements before describing existing efforts to overcome152

and/or minimize these risks and to maximize the positive impact of AI-driven decision-making.153

Computational violations of privacy154

The use of AI in decision-making processes often requires the training of machine learning algo-155

rithms on datasets that may include sensitive information about people’s characteristics and be-156

haviors. Moreover, a frequently overlooked element is that current machine learning approaches,157

coupled with the availability of novel sources of behavioral data (e.g. social media data, mobile158

phone data, credit card transactions, etc.), allow the learning algorithm to make inferences about159

private information that may never have been disclosed.160

A well-known study by Kosinski et al. (Kosinski et al. 2013) used survey information as ground-161

truth and data on Facebook "Likes" to accurately predict sexual orientation, ethnic origin, religious162

and political preferences, personality traits as well as alcohol, drugs, and cigarettes use of over163

58,000 volunteers. For example, the simple logistic/linear regression model is able to correctly164
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discriminate between African Americans and Caucasian Americans in 95% of cases, between an165

homosexual and an heterosexual men in 88% of cases, and between Democrats and Republicans166

in 85% of cases.167

More recently, Wang and Kosinski (Wang & Kosinski 2018) used deep neural networks to extract168

visual features from more than 35,000 facial images. Then, these features were used with a logistic169

regression algorithm to classify the sexual orientation of the study participants. The authors show170

that this simple classifier, using a single facial image, could correctly discriminate between gay and171

heterosexual men in 81% of cases and between gay and heterosexual women in 71% of cases.172

Human judges, instead, achieved a much lower classification accuracy, namely 61% for men and173

54% for women. As pointed out by the authors (Wang & Kosinski 2018), these findings highlight174

the threats to the privacy and safety of homosexuals given that companies (e.g. recruitment and175

advertising companies, banks, insurances, etc.) and governments are increasingly using computer176

vision algorithms to detect people’s traits and attitudes.177

Along a similar line, Matz et al. introduced a psychological targeting approach (Matz et al. 2017)178

that consists in predicting people’s psychological profiles (e.g. Big Five personality traits) from their179

digital footprints, such as Twitter and Facebook profiles (Quercia et al. 2011, Kosinski et al. 2013,180

Schwartz et al. 2013, Segalin et al. 2017), mobile phone data (Staiano et al. 2012, de Montjoye,181

Quoidbach, Robic & Pentland 2013, Chittaranjan et al. 2013, Stachl et al. 2020), credit card trans-182

actions (Gladstone et al. 2019) and even 3G/4G/Wifi usage patterns (Park et al. 2018), in order to183

influence people’s behaviors by means of psychologically-driven interventions. This technological184

approach attracted significant attention in the context of the Facebook-Cambridge Analytica scan-185

dal, where millions of Facebook users’ personal data and psychological profiles were extracted186

and used without consent by Cambridge Analytica, a British consulting political firm, mainly acting187

in the domain of political advertising.188

Despite the algorithmic advancements in anonymizing data, several works have shown that is189

feasible to infer identities from pseudo-anonymized human behavioral traces. For example, de190

Montjoye et al. (de Montjoye, Hidalgo, Verleysen & Blondel 2013, de Montjoye et al. 2015) have191

demonstrated how unique mobility and shopping behaviors are for each individual. Specifically,192

the authors have shown that four spatio-temporal points are enough to uniquely identify 95% of193

people in a pseudo-anonymized mobile phone dataset of 1.5 millions people (de Montjoye, Hidalgo,194

Verleysen & Blondel 2013) and to identify 90% of people in a pseudo-anonymized credit card195

transactions dataset of 1 million people (de Montjoye et al. 2015).196

Furthermore, since machine learning algorithms were often designed without considering poten-197

tial adversarial attacks, several recent studies are highlighting their privacy vulnerabilities (Papernot198
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et al. 2016, Song et al. 2019). More precisely, adversarial attacks aim at obtaining private sensi-199

tive information about the learning model or the model’s training data. For example, the attacks200

targeting the learning model’s privacy include (i) the inference of model’s hyperparameters using201

stealing attacks (Wang & Zhenqiang Gong 2018, Song et al. 2019) and (ii) the inference of model’s202

details using model extraction attacks (Tramér et al. 2016, Song et al. 2019). Regarding data pri-203

vacy, adversarial attacks may also infer, using membership inference attacks (Shokri et al. 2017,204

Nasr et al. 2019, Song et al. 2019), whether input examples are used to train the target learning205

model. Additional adversarial attacks targeting data privacy include covert channel model training206

attacks (Song et al. 2017, 2019) as well as the adoption of property inference attacks to learn207

global properties of training data (Ganju et al. 2018, Song et al. 2019). As a consequence, the208

privacy research community has designed and developed defenses to prevent privacy leakage of209

the target learning model (Kesarwani et al. 2018, Song et al. 2019) and of the model’s training210

data (Shokri & Shmatikov 2015, Abadi et al. 2016, Hayes & Ohrimenko 2018, Song et al. 2019).211

However, adversarial attacks raise broader risks for the robustness and the trustworthiness of the212

machine-learning based systems. A notable example is the attack consisting in pasting stickers213

on traffic signs to fool the computer vision-based signage recognition module in the autonomous214

vehicles (Eykholt et al. 2018).215

Lack of transparency and accountability216

Transparency in corporate and government use of AI-driven decision-making tools is of funda-217

mental importance to identify, measure and redress harms (e.g. privacy harms) and discrimi-218

natory effects generated by these algorithms, as well as to validate their value for public inter-219

est. Moreover, transparency is generally thought as a mechanism that facilitates accountability,220

namely the clarity regarding who holds the responsibility of the decisions made by AI algorithms or221

with algorithmic support. For this reason, the General Data Protection Regulation (GDPR) frame-222

work, launched in 2018 in the European Union (EU), highlighted a “right to an explanation". See223

http://eur-lex.europa.eu/eli/reg/2016/679/oj for more details on the “Regulation (EU)224

2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of225

natural persons with regard to the processing of the free movement of personal data, and Directive226

95/46/EC (General Data Protection Regulation)".227

In "The Mythos of Model Interpretability" (Lipton 2018), the computer scientist Lipton has identified228

three different notions of transparency: (i) at the level of the whole learning model (i.e. the entire229

model can be explained and understood), (ii) at the level of individual components (i.e. each230

component of the model can be explained and understood), and (iii) at the level of the training231

7

Jo
urn

al 
Pre-

pro
of

http://eur-lex.europa.eu/eli/reg/2016/679/oj


algorithm (i.e. only the specific algorithm can be explained and understood without any explanation232

and understanding of the entire model or of its components).233

However, different types of opacity or lack of transparency might emerge in AI-driven decision-234

making tools (Burrell 2016). For example, Datta et al. (Datta et al. 2015) have investigated the235

trasparency provided by Google’s Ad Settings using their AdFisher tool and they have found ex-236

amples of opacity as they encountered cases where there were significant differences in the ads237

shown to different user profiles while the AdFisher tool failed to identify any type of algorithmic238

profiling.239

Moreover, the inventor and owner of an AI system could intentionally design an opaque system240

in order to protect the intellectual property or to avoid the gaming of the system (Burrell 2016).241

Regarding the latter case, network security applications of machine learning remain opaque in242

order to be effective in dealing with frauds, spams and scams (Burrell 2016). This intentional243

opacity (Burrell 2016) could be mitigated with legislation interventions in favour of the use of open244

source AI systems (Diakopoulos 2015, Pasquale 2015). However, these interventions often may245

collide with the interests of corporations that develop and use these systems. For example, when246

the algorithmic decision being regulated is a commercial one, a legitimate business interest in247

protecting the algorithm or the proprietary information may conflict with a request of full trasparency.248

The second type of opacity is illiterate opacity (Burrell 2016), given that a large fraction of the249

population currently lacks the technical skills to understand how the machine learning algorithms250

work and how they build models from input data. This kind of opacity might be attenuated by251

establishing educational programs for e.g. policy makers, journalists, activists in computational252

thinking and AI, as well as helping the people affected by machine learning decisions to resort to253

the advice of independent technical experts.254

Finally, certain machine learning algorithms (e.g. deep learning models) are by nature difficult to255

interpret. This intrinsic opacity (Burrell 2016) is well-known in the academic machine learning com-256

munity and it is usually referred to as the interpretability problem (Lipton 2018). The main approach257

to deal with this type of opacity is to use alternative machine learning models that are easier to inter-258

pret by humans in order to characterize the decisions made by the black-box algorithm. However,259

this approach typically does not provide a perfect model of the black-box algorithm’s performance.260

Biases and discriminatory effects261

In legal terms, discrimination occurs when two different rules are applied to similar situations, or262

the same rule is applied to different situations (Tobler 2008). Turning our attention to the use of263
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machine learning in decision-making processes, discriminatory effects and biases could be the264

result of the way input data are collected and/or of the learning process itself (Barocas & Selbst265

2016, Barocas et al. 2018).266

First of all, specific features and attributes may be poorly weighted, thus leading to disparate im-267

pact (Barocas & Selbst 2016, Barocas et al. 2018). For example, predictive policing algorithms268

may overemphasize the predictive role of the "zip code" attribute, thus leading to the association269

of low-income African-American and Latino neighborhoods with areas with high criminality. This270

example highlights an area of ethical ambiguity in current law, known as indirect discrimination271

(Christin et al. 2015), in which social conditions (such as the neighborhood) plays a role in individ-272

ual decision making, but the algorithm (or law) imputes these social constraints to choices made273

by the individual.274

As before, biased training data can be used both for training models and for evaluating their predic-275

tive performance (Calders & Zliobaite 2013), and machine learning algorithms can lead to discrim-276

inatory effects as a result of their misuse in specific contexts (Calders & Zliobaite 2013). Indeed,277

discrimination may occur from the simple decision of when to use an algorithm, a choice that278

inevitably excludes consideration of some contextual variables (Diakopoulos 2015).279

Moreover, the use of AI-driven decision-making processes may also result in the denial of opportu-280

nities and resources to individuals not because of their own actions but due to the actions of other281

individuals with whom they share some characteristics (e.g. income levels, gender, ethnic origin,282

neighborhoods, personality traits, etc.) (Lepri et al. 2018).283

However, as recently argued by Kleinberg et al. (Kleinberg et al. 2020), the prevention of discrim-284

inatory effects requires the identification of means to detect these effects, and this can be very285

difficult when human beings are making the decisions. Interestingly, machine learning algorithms286

require greater levels of detail and specificity than the ones needed in the human decision-making287

processes. Thus, regulatory and legal changes may potentially force machine learning algorithms288

to be transparent and to become effective tools for detecting and preventing discrimination (Klein-289

berg et al. 2020).290

Note that these limitations of AI systems are not disconnected from each other. Recent work has291

explored the relationship between algorithmic fairness and explainability. For example, Dodge et292

al. (Dodge et al. 2019) studied how unbiased, user-friendly explanations might help humans as-293

sess the fairness of a specific machine learning-based decision-making system. The authors find294

that the type of explanation impacts the users’ perception of algorithmic fairness; different types of295

fairness might require different styles of explanation; and there are individual differences that deter-296

mine people’s reactions to different kinds of explanations. Others have developed visualizations of297
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different definitions of fairness in ranking decisions to support human decision-making (Ahn & Lin298

2020). Thus, there is a fertile ground for novel research at the intersection of algorithmic fairness,299

explainability and accountability.300

Requirements for a Human-centric AI301

In this section, we provide an overview of current research efforts towards the development of302

a Human-centric AI. These efforts include a fundamental renegotiation of user-centric data own-303

ership and management as well as the development of secure and privacy-preserving machine304

learning algorithms; the deployment of transparent and accountable algorithms; and the introduc-305

tion of machine learning fairness principles and methodologies to overcome biases and discrimi-306

natory effects. In our view, humans should be placed at the center of the discussion as humans307

are ultimately both the actors and the subjects of the decisions made via algorithmic means. If308

we are able to ensure that these requirements are met, we should be able to realize the positive309

potential of AI-driven decision-making while minimizing the risks and possible negative unintended310

consequences on individuals and on the society as a whole.311

Privacy-preserving AI algorithms and data cooperatives312

A big question for policy-makers and researchers is the following: how do we unlock the value of313

human behavioral data while preserving the fundamental right to privacy? To address this issue,314

the computer science and AI communities have over the years developed several approaches315

ranging from data obfuscation (i.e. the process of hiding personally identifiable information and316

other sensitive data using modified content) (Bakken et al. 2004), data anonymization (i.e. the317

process of removing personally identifiable information and other sensitive data from datasets)318

(Cormode & Srivastava 2009), adversarial training (i.e. a technique adopted in computer vision319

and machine learning communities to obfuscate features so that an attacker cannot reconstruct320

the original image or to infer sensitive information from those features) (Feutry et al. 2018, Kim321

et al. 2019, Li et al. 2020), and the generation of synthetic datasets (Machanavajjhala et al. 2008)322

to methods for quantifying privacy guarantees, such as differential privacy (Dwork 2008, Dwork323

& Roth 2014, Kearns & Roth 2020), or privacy-preserving machine learning (PPML) approaches324

(Chaudhuri & Monteleoni 2008). PPML is inspired by research efforts in cryptography and it has325

the goal of protecting the privacy of the input data and/or of the models used in the learning task.326

Examples of PPML approaches are (i) federated learning (Kairouz et al. 2019, Yang et al. 2019)327

and (ii) encrypted computation (Dowlin et al. 2016).328
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More in detail, differential privacy (Dwork 2008, Dwork & Roth 2014, Kearns & Roth 2020) is a329

methodology that provides a formal quantification of privacy guarantees with respect to an aggre-330

gate metric on a dataset due to a privacy protection mechanism. Examples of privacy protection331

mechanisms that differential privacy can be applied to include adding noise, providing a coarser332

histogram, or learning with adversarial examples. The value of differential privacy is that given333

a particular dataset and privacy mechanism it can quantify the probability of a privacy leak with334

guarantees. Furthermore, differential privacy guarantees that the distribution of aggregate metric335

values (e.g. database values, model predictions), such as mean, variance, prediction probability336

distribution, etc., are indistinguishable (to within some bound) between the original dataset and a337

dataset where any training datapoint is omitted (Dwork 2008, Dwork & Roth 2014, Kearns & Roth338

2020).339

Federated learning is a machine learning approach where different entities or organizations col-340

laboratively train a model, while at the same time they keep the training data decentralized in local341

nodes (Kairouz et al. 2019, Yang et al. 2019). Hence, the raw data samples of each entity are342

stored locally and never exchanged, and only parameters of the learning algorithm are exchanged343

in order to generate a global model (Kairouz et al. 2019, Yang et al. 2019). It is worth noting that344

federated learning (Kairouz et al. 2019, Yang et al. 2019) does not provide a full guarantee of the345

privacy of sensitive data (e.g. personal data) as some characteristics of the raw data could be346

memorized during the training of the algorithm and thus extracted. For this reason, differential347

privacy can complement federated learning by providing guarantees of keeping private the con-348

tribution of single organizations/nodes in the federated setting (Brundage et al. 2020, Dubey &349

Pentland 2020).350

Finally, encrypted computation (Dowlin et al. 2016) aims at protecting the learning model itself by351

allowing to train and evaluate on encrypted data. Thus, the entity/organization training the model352

is not be able to see and/or leak the data in its non-encrypted form. Examples of methods for en-353

crypted computation are (i) homomorphic encryption (Dowlin et al. 2016), (ii) functional encryption354

(Dowlin et al. 2016), (iii) secure multi-party computation (Dowlin et al. 2016), and (iv) influence355

matching (Pan et al. 2012).356

This is an active and growing area with several open-source frameworks available to perform357

privacy-preserving machine learning, such as PySyft (https://github.com/OpenMined/PySyft), Ten-358

sor Flow Federated (https://www.tensorflow.org/federated), FATE (https://fate.fedai.org/overview/),359

PaddleFL (https://paddlefl.readthedocs.io/en/latest), Sherpa.AI (https://developers.sherpa.ai/privacy-360

technology/), and Tensor Flow Privacy (https://github.com/tensorflow/privacy).361

Additionally, new user-centric models and technologies for personal data management have been362
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proposed, in order to empower individuals with more control of their own data’s life-cycle (Pent-363

land 2012, de Montjoye et al. 2014, Staiano et al. 2014). Along this line, Hardjono and Pentland364

(Hardjono & Pentland 2019) have recently introduced the notion of a data cooperative that refers365

to the voluntary collaborative sharing by individuals of their personal data for the benefit of their366

community. The authors underline several key aspects of a data cooperative. First of all, a data367

cooperative member has legal ownership of her/his data: this data can be collected into her/his368

Personal Data Store (PDS) (de Montjoye et al. 2014), and s/he can add and remove data from the369

PDS as well as suspend access to the data repository. Members have the option to maintain their370

single or multiple Personal Data Stores at the cooperative or in private data servers. However, if371

the data store is hosted at the cooperative, then data protection (e.g. data encryption) and curation372

are performed by the cooperative itself for the benefit of its members. Moreover, the data coop-373

erative has a legal fiduciary obligation to its members (Balkin 2016, Hardjono & Pentland 2019):374

this means that the cooperative organization is owned and controlled by the members. Finally, the375

ultimate goal of the data cooperative is to benefit and empower its members (Hardjono & Pentland376

2019). As highlighted by Hardjono and Pentland (Hardjono & Pentland 2019), credit and labor377

unions can provide an inspiration for data cooperatives as collective institutions able to represent378

the data rights of individuals.379

Interestingly, Loi et al. (Loi et al. 2020) have recently proposed personal data platform cooperatives380

as means for avoiding asymmetries and inequalities in the data economy and realizing the concept381

of property-owning democracy, introduced by the political and moral philosopher Rawls (Rawls382

1971, 2001). In particular, Loi et al. (Loi et al. 2020) argue that a society characterized by multiple383

personal data platform cooperatives is more likely to realize the Rawls’ principle of fair Equality of384

Opportunity (Rawls 1971, 2001), where individuals have equal access to the resources –data in385

this case– needed to develop their talents.386

Algorithmic transparency and accountability387

The traditional strategy for ensuring soundness of a decision-making process is auditing, and this388

approach may easily be applied to machine learning decisions. This strategy deals with the deci-389

sion process as a black-box where only inputs and outputs are visible (Sandvig et al. 2014, Guidotti390

et al. 2018). However, while this approach can demonstrate the fairness or accuracy of the deci-391

sions, it has limitations for understanding the reasons for particular decisions (Datta et al. 2015,392

Guidotti et al. 2018).393

As a consequence, explanations are increasingly advocated in the research community (Doshi-394

Velez & Kim 2017, Adadi & Berrada 2018, Guidotti et al. 2018, Lipton 2018, Wang et al. 2019,395
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Miller 2019, Barocas et al. 2020) as a way to help people understand AI-driven decision making396

processes (Lipton 2018, Selbst & Barocas 2018, Wachter et al. 2018) and identify when they should397

object to the decisions made by the algorithms (Wachter et al. 2018, Lipton 2018, Selbst & Barocas398

2018). As argued by Adadi et al. (Adadi & Berrada 2018), the variety of explainability methods,399

proposed over years, can be classified according to three criteria: (i) the complexity of providing an400

explanation (i.e. more complex is a machine learning model more difficult it is to explain), (ii) the401

type of explanation (i.e. global vs local explanations), and (iii) the dependency from the adopted402

machine learning model (i.e. model-specific vs model-agnostic explanations).403

Regarding the complexity-related methods, the most simple and straightforward approach is the404

design and implementation of machine learning algorithms that are intrisically easy to interpret and405

explain. Several works have proposed this explainability strategy (Caruana et al. 2017, Letham406

et al. 2015, Ustun & Rudin 2015). However, a problem with the adoption of this strategy is the407

tradeoff between explainability and accuracy. Indeed, more simple and interpretable models tend408

to be also less accurate (Sarkar et al. 2016). To avoid this potential tradeoff, several works have409

proposed to build complex and highly accurate black-box models and then use a different set410

of techniques to provide the required explanations without knowing the inner functioning of the411

original machine learning model. In this way, this approach offers a post-hoc explanation, e.g.412

using examples, visualizations or natural language descriptions (Mikolov et al. 2013, Mahendran413

& Vedaldi 2015, Krening et al. 2016, Lipton 2018). As an alternative, some works have proposed414

intrinsic methods that modify the structure of a complex black-box model (e.g. a deep neural415

network) to improve its interpretability (Dong et al. 2017, Louizos et al. 2017).416

As previously said, some research efforts have attempted to provide an explanation of the global417

behavior of a machine learning model (i.e. global explanations) (Lakkaraju et al. 2016, Adadi &418

Berrada 2018, Lipton 2018, Brundage et al. 2020), while others have focused on a specific pre-419

diction of the model given an input (i.e. local explanations) (Baehrens et al. 2010, Zeiler & Fergus420

2014, Zhou et al. 2016, Fong & Vedaldi 2017, Wei Koh & Liang 2017, Adadi & Berrada 2018, Yeh421

et al. 2018, Fong et al. 2019, Brundage et al. 2020, Guidotti 2021). Notable examples of building422

explanations about the global behavior of a machine learning model are (i) the characterization of423

the role played by the internal components of the model (e.g. visualization of the features) (Bau424

et al. 2017, Ulyanov et al. 2018, Brundage et al. 2020), and (ii) the approximation of a complex425

model by means of a simpler one (e.g. a decision tree) (Zhang et al. 2019, Brundage et al. 2020).426

However, it is worth noticing that global explanations are hard to obtain, in particular for machine427

learning models characterized by a large number of parameters (Adadi & Berrada 2018). Instead,428

notable examples of building explanations for a specific decision or a single prediction include (i)429

identifying which training examples (Lakkaraju et al. 2016, Wei Koh & Liang 2017, Yeh et al. 2018)430
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or (ii) which parts of the training data (Dabkowski & Gal 2017, Fong & Vedaldi 2017, Fong et al.431

2019) are responsible for the model’s prediction. A recent promising line of work is trying to com-432

bine the benefits of global and local explanations (Linsley et al. 2018, Molnar 2019, Pedreschi et al.433

2019).434

Furthermore, a third way to characterize techniques for explaining machine learning models is435

whether they are model-agnostic explanations, thus applicable to any type of machine learning436

model, or model-specific explanations, thus applicable only to a single class of machine learning437

algorithms (Adadi & Berrada 2018). As highlighted by Adadi et al. (Adadi & Berrada 2018), intrin-438

sic methods provide by definition model-specific explanations. However, this approach limits the439

choice of models, often at the expenses of more predictive and accurate ones (Adadi & Berrada440

2018). For this reason, there has been a recent growth of model-agnostic approaches, which441

separate prediction and explanation. These model-agnostic methods fall into four techniques: (i)442

visualizations, (ii) influence methods, (iii) example-based explanations, and (iv) knowledge extrac-443

tion (Adadi & Berrada 2018).444

The idea behind visualization techniques is to visualize, expecially in deep neural networks, the445

representations of the learning model. Popular examples of visualization techniques are (i) sur-446

rogate models (i.e. interpretable models like a decision tree which are trained on the predictions447

of the black-box model to make easier its interpretation) (Ribeiro et al. 2016, Bastani et al. 2017),448

(ii) partial dependance plots (i.e. graphical representations visualizing the partial average relation-449

ships between input variables and predictions) (Chipman et al. 2010), and (iii) individual conditional450

expectations (i.e. plots revealing the individual relationships between input variables and predic-451

tions by disaggregating the output of the partial dependance plots) (Casalicchio et al. 2018).452

Influence methods, instead, estimate the relevance of an input variable (i.e. feature) by modifying453

the input data or the internal components of the model, and then recording how the change affects454

the performance of the machine learning model (Adadi & Berrada 2018). Looking at the state-of-455

the-art literature, we may find three different approaches to estimate the importance of an input456

variable: (i) sensitivity analysis (i.e. this method evaluates wheter the performance of the model457

remains stable when input data are perturbed) (Cortez & Embrechts 2013), (ii) feature importance458

(i.e. this approach quantifies the contribution of a given input variable to the model’s predictions459

by computing the increase of the prediction after permuting the input variable) (Casalicchio et al.460

2018), and (iii) layer-wise relevance propagation algorithm (i.e. this method decomposes the output461

of a deep neural network into the relevance scores of the input and at the same time keeps the462

total amount of relevance constant across the layers) (Bach et al. 2015).463

Example-based explanations select specific instances of the dataset under investigation to explain464
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the behavior of a machine learning model. Two promising approaches are (i) counterfactual expla-465

nations (i.e. these explanations are generated by analyzing how minimal changes in the features466

would impact and modify the output of the learning model) (Wachter et al. 2018, Dhurandhar et al.467

2018, Karimi et al. 2020), and (ii) prototypes and criticisms (i.e. prototypes are representative in-468

stances from the dataset, while criticisms are instances not well represented by those prototypes)469

(Kim et al. 2014, 2016).470

Finally, some techniques aim at extracting, in a understandable form, knowledge from a machine471

learning model (in particular, from deep neural networks). Examples of these techniques are (i)472

rule extraction (i.e. this approach provides a symbolic description of the knowledge learned by an473

highly complex model) (Hailesilassie 2016), and (ii) model distillation (i.e. distillation consists in474

a model compression to transfer information from an highly complex model, called "teacher", to a475

simpler one, called "student") (Hinton et al. 2015, Furlanello et al. 2018, Xu et al. 2018).476

Obviously, a relevant challenge about transparency and accountability is the difficulty in producing477

explanations that are human-understandable (Guidotti et al. 2018). This implies the communi-478

cation of complex computational processes to humans, and thus it requires a multidisciplinary479

research effort mixing methodologies and technologies from human-computer interaction and ma-480

chine learning communities with models on human explanation processes developed in cognitive481

and social sciences. For example, the AI scholar Tim Miller (Miller 2019) has extensively analysed482

the research conducted on human explanation processes in cognitive science (Lombrozo 2006),483

cognitive and social psychology (Hilton 1990) and philosophy (Lewis 1974), and has highlighted484

four major findings to take into account in order to build explainable AI methods that can be under-485

stable and useful for humans. First of all, explanations are contrastive (Lipton 1990, Miller 2019);486

this means that people do not ask why a given event happened, but rather why this event happened487

instead of an alternative one. Then, explanations are selective and thus they focus only on one or488

few possible causes and not on all the possible ones (Hilton et al. 2010, Miller 2019). Explanations489

constitutes a social conversation for transfering knowledge (Hilton 1990, Walton 2004), and thus490

the AI-driven explainer should be able to leverage the mental model of the human explainee during491

the explanation process (Miller 2019). Finally, the reference to statistical associations in human492

explanations is less effective than referring to causes.493

Adopting a similar multidisciplinary approach and drawing insights from philosophy, cognitive psy-494

chology and decision science (Lipton 1990, Hoffman & Klein 2017, Miller 2019), Wang et al. (Wang495

et al. 2019) have recently proposed a conceptual framework that connects explainable AI tech-496

niques with core concepts of the human decision-making processes. First of all, the authors have497

identified why individuals look for explanations (i.e. to focus on a small set of causes, to generalize498

observations in a model able to predict future events, etc.) and how they should reason. Then,499
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Wang et al. (Wang et al. 2019) analyzed several explainable AI techniques and how they have500

been developed to support specific reasoning methods. For example, visualization techniques,501

such as saliency heatmaps (Ribeiro et al. 2016, Kim et al. 2018), support contrastive and counter-502

factual explanations (Miller 2019). As a third part of their conceptual framework, the authors have503

highlighted and discussed how fast reasoning and cognitive biases may negatively impact human504

decision-making processes, thus inducing errors (Croskerry 2009, Kahneman & Egan 2011). Fi-505

nally, Wang et al. (Wang et al. 2019) described how explainable AI methods can be adopted as506

strategies to mitigate some decision biases such as the anchoring bias (i.e. it occurs when the507

decision-maker is not open to explore alternative hypotheses), the confirmation bias (i.e. the ten-508

dency of the decision-maker to interpret information in a way that confirms her/his previous beliefs),509

the availability bias (it occurs when the decision-maker is unfamiliar with the frequency of a specific510

outcome), etc.511

Another relevant aspect for algorithmic accountability and transparency is how and from where512

input data are collected. As recently discussed by Hohman et al. (Hohman et al. 2020), machine513

learning applications require an iterative process to create successful models (Amershi et al. 2014).514

In particular, Hohman et al. (Hohman et al. 2020) have shown that data iteration (e.g. collecting515

novel training data to improve model’s performance) is equally important as model iteration (e.g.516

searching for hyperparameters and architectures).517

Finally, transparency is generally thought as a key enabler of accountability. However, trans-518

parency is not always needed for accountability. For instance, Kroll et al. (Kroll et al. 2017) in-519

troduced computational methods that are able to provide accountability even when some fairness-520

sensitive information is kept hidden, and our earlier discussion about privacy-preserving learning,521

federated learning, and learning on encrypted data suggests additional paths to accountability522

without disclosing sensitive data or algorithms.523

Algorithmic fairness524

A simple way to try to avoid discrimination and to maximize fairness is the blindness approach,525

namely precluding the use of sensitive attributes (e.g. gender, race, age, income level) in the526

learning task (Calders & Verwer 2010, Kamiran et al. 2010, Schermer 2011, Barocas & Selbst527

2016, Kearns & Roth 2020). For example, in order to build a race-blind AI-driven decision-making528

process we could avoid to use the "race" attribute. However, this approach has several technical529

limitations: first of all, the excluded attribute might be implicit in the non-excluded ones (Romei &530

Ruggieri 2014, Zarsky 2016, Kearns & Roth 2020). For example, the "race" attibute might not be531

taken directly into account as a criterion for granting or not a loan. However, it might implicitly be532
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present via e.g. the applicant’s zip code, given that zip code may be a good proxy for race in a533

segregated urban environment (Schermer 2011, Macnish 2012).534

As a consequence, several researchers have proposed alternative approaches of machine learning535

fairness that formalize the notion of group fairness (Calders & Verwer 2010, Kamishima et al. 2011,536

Zemel et al. 2012, Feldman et al. 2015, Kearns & Roth 2020). One of the most used methods is537

statistical parity, which requires that an equal fraction of each group according to a protected538

attribute (i.e. black vs white applicants) receives each possible outcome (i.e. loan vs no loan)539

(Calders & Verwer 2010, Kamishima et al. 2011, Zemel et al. 2012, Feldman et al. 2015, Kearns540

& Roth 2020). However, the group fairness approach often fails at obtaining a good accuracy, as541

illustrated by the following example in a lending scenario: if two groups (group A and group B) have542

different proportions of individuals who are able to pay back their loans (e.g. group A has a larger543

proportion than group B), then the algorithm’s accuracy will be compromised if we constrained the544

algorithm to predict an equal proportion of payback for the two groups. Another issue related to545

group fairness is that a creditworthy individual from group A has no guarantee to have an equal546

probability of receiving a loan as a similarly creditworthy individual from group B.547

A different framework, called individual fairness, was introduced by Dwork et al. (Dwork et al.548

2012). This fairness framework is based on a similarity metric between individuals: any two indi-549

viduals who are similar should be classified in a similar way (Dwork et al. 2012). This definition550

resembles partly the interpretation of Equality of Opportunity (EoP) proposed by the political sci-551

entist Roemer (Roemer 1996, 1998). For Roemer, EoP is achieved when people, irrespective of552

circumstances beyond their control (e.g. birth circumstances, such as gender, race, familiar socio-553

economic status, and so forth), have the same ability to achieve desired outcomes through their554

choices, actions, and efforts (Roemer 1996, 1998). In particular, Roemer claims that if inequalities555

are caused by birth circumstances, then these are unacceptable and must be compensated by556

society (Roemer 1996, 1998).557

Following Dwork et al.’s work (Dwork et al. 2012), Joseph et al. (Joseph et al. 2016) proposed558

an approach to individual fairness that can be considered as a mathematical formalization of the559

Rawlsian principle of "fair Equality of Opportunity" (Rawls 1971). This principle affirms that those560

individuals, "who are at the same level of talent and have the same willingness of using it, should561

have the same perspectives of success regardless their initial place in the social system" (Rawls562

1971). Hence, the formalization of machine learning fairness, proposed by Joseph et al. (Joseph563

et al. 2016), requires that the learning algorithm never favors applicants whose attributes (e.g.564

income level) are lower than the ones of another applicant. Along this line, Hardt et al. (Hardt et al.565

2016) have proposed a fairness measure, based again on Equality of Opportunity, that tries to566

overcome the main conceptual shortcomings of statistical parity as a fairness notion, and to build567
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classifiers with high accuracy. To this end, they have shown how to optimally adjust any supervised568

learned predictor to remove discrimination against a specific sensitive attribute (e.g. race, gender,569

etc.).570

Another interesting set of results are the ones obtained by Friedler et al. (Friedler et al. 2016),571

Corbett-Davies et al. (Corbett-Davies et al. 2017), and Kleinberg et al. (Kleinberg et al. 2017),572

which highlight that it is not enough to simply achieve algorithmic fairness. For example, Friedler et573

al. (Friedler et al. 2016) have proven the impossibility of simultaneously satisfying the mathematical574

constraints of multiple formalizations of fairness, and thus the impossibility of a single universally575

accepted definition and metric of algorithmic fairness. Indeed, each metric embodies a different576

criterion of equity. A similar result was discussed by Kleinberg et al. (Kleinberg et al. 2017). In their577

paper, they formalized three fairness conditions, namely calibration within groups, balance for the578

positive class, and balance for the negative class. Interestingly, they proved that, except in highly579

constrained special cases, there is no method that is able to satisfy these three conditions at the580

same time (Kleinberg et al. 2017).581

Thus, choosing a particular fairness metric involves implicitly committing to a moral and political582

philosophy (Heidari et al. 2019, Gummadi & Heidari 2019), the role of social context in the selection583

process of the fairness metric (Grgic-Hlaca et al. 2018, Madras et al. 2018), and issues of human584

perception of those metrics (Srivastava et al. 2019). This shifts the question of fairness from a585

purely technical task to a multi-disciplinary problem. In particular, the problems of defining what586

equity means as well as what is fair in a given context (Barry 1991) become of paramount rele-587

vance. Indeed, what constitutes fairness changes according to different worldviews: for example,588

the moral and political philosopher Nozick in his book "Anarchy, State, and Utopia" (Nozick 1974)589

proposed a libertarian alternative view to the Rawlsian notion of EoP. In his view, the elimination590

of the discriminatory biases, present in society, may create new harms to new groups of people.591

For this reason, it is urgent to bring together, in joint publications, conferences, projects and institu-592

tions, researchers from different fields –including law, moral and political philosophy, and machine593

learning– to devise, evaluate and validate in the real-world alternative fairness metrics for different594

tasks.595

Finally, as previously noted, recent work has also explored the relationship between fairness and596

explainability of decision-making algorithms, showing that the type of explanation influences the597

human’s perception of how fair an algorithm is (Dodge et al. 2019).598
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Conclusion599

Our society is experiencing an unprecedented historic moment where the availability of vast amounts600

of human behavioral data, combined with advances in Artificial Intelligence (and particularly ma-601

chine learning), is enabling us to tackle complex problems through the use of algorithmic decision-602

making processes. The opportunity to significantly improve the processes leading to decisions that603

affect millions of lives is huge. As researchers and citizens we believe that we should not miss this604

opportunity. However, we should focus our attention on existing risks related to the use of algorith-605

mic decision-making processes, including computational violations of privacy, power and informa-606

tion assymetry, lack of transparency and accountability, and discrimination and bias. It is important607

to note that tackling these limitations would entail multi-disciplinary teams working together with608

expertise in areas, such as machine learning, human-computer interaction, cognitive sciences, so-609

cial and cognitive psychology, decision theory, ethics and philosophy, and the law. It will only be610

via multi-disciplinary approaches, as shown for building human-understandable AI systems and for611

connecting algorithmic fairness approaches with different moral and political worldviews, that we612

will be able to effectively address the limitations of today’s algorithmic decision-making systems.613

We have also underlined three extensive requirements that we consider to be of paramount im-614

portance in order to enable an ethical and human-centric use of Artificial Intelligence: (i) privacy-615

preserving machine learning and user-centric data ownership and management; (ii) algorithmic616

transparency and accountability; and (iii) algorithmic fairness. If we will honor these requirements,617

then we would be able to move from the feared tyranny of Artificial Intelligence and of algorithmic618

mass surveillance (Zuboff 2019) to a Human-centric AI model of democratic governance for the619

people.620
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Highlights 
 

● Artificial Intelligence (AI) algorithms are increasingly used to make or assist in 
making decisions with significant impact in people’s lives. 

● Algorithmic decision-making is not exempt from risks and limitations: it has been 
shown to lead to privacy invasion, opacity, and discrimination.  

● We propose three requirements to achieve a human-centric AI: (1) privacy-
preserving algorithms and data cooperatives; (2) human-understandable 
explanations; and (3) algorithmic fairness approaches connected with different 
worldviews. 

● We call for a multidisciplinary effort of researchers from machine learning, 
human-computer interaction, cognitive sciences, ethics and philosophy, and the 
law as well as of policy makers and citizens. 
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