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Social networks continuously change as new ties are created and
existing ones fade. It is widely acknowledged that our social
embedding has a substantial impact on what information we
receive and how we form beliefs and make decisions. How-
ever, most empirical studies on the role of social networks in
collective intelligence have overlooked the dynamic nature of
social networks and its role in fostering adaptive collective intelli-
gence. Therefore, little is known about how groups of individuals
dynamically modify their local connections and, accordingly, the
topology of the network of interactions to respond to chang-
ing environmental conditions. In this paper, we address this
question through a series of behavioral experiments and sup-
porting simulations. Our results reveal that, in the presence of
plasticity and feedback, social networks can adapt to biased
and changing information environments and produce collective
estimates that are more accurate than their best-performing
member. To explain these results, we explore two mechanisms:
1) a global-adaptation mechanism where the structural connec-
tivity of the network itself changes such that it amplifies the
estimates of high-performing members within the group (i.e.,
the network “edges” encode the computation); and 2) a local-
adaptation mechanism where accurate individuals are more resis-
tant to social influence (i.e., adjustments to the attributes of the
“node” in the network); therefore, their initial belief is dispro-
portionately weighted in the collective estimate. Our findings
substantiate the role of social-network plasticity and feedback
as key adaptive mechanisms for refining individual and collective
judgments.

social networks | collective intelligence | wisdom of crowds |
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Intelligent systems, both natural and artificial, rely on feed-
back and the ability to reorganize (1, 2). Such systems are

widespread and can often be viewed as networks of interact-
ing components that dynamically modify their connections. Cell
reproduction relies on protein networks to combine sensory
inputs into gene-expression choices adapted to environmen-
tal conditions (3). Neurons in the brain dynamically rewire in
response to environmental tasks to enable human learning (4).
Eusocial insects modify their interaction structures in the face
of environmental hazards as a strategy for collective resilience
(5). Fish schools collectively encode information about the per-
ceived predation risk in their environment by changing the
structural connectivity of their interaction (2). In the artificial
realm, several machine-learning algorithms rely on similar con-
cepts, where dynamically updated networks guided by feedback
integrate input signals into useful output (6). The combination of
network plasticity and environmental feedback is a widespread
strategy for collective adaptability in the face of environmental
changes. This strategy provides groups with practical and easy-
to-implement mechanisms of encoding information about the
external environment (2, 5).

The emergent ability of interacting human groups to pro-
cess information about their environment is no exception to

this use of feedback to guide reorganization. People’s behav-
ior, opinion formation, and decision making are deeply rooted
in cumulative bodies of social information, accessed through
social networks formed by choices of who we befriend (7), imi-
tate (8), cooperate with (9), and trust (10, 11). Moreover, peer
choices tend to be revised, most frequently based on notions of
environmental cues (such as success and reliability) or proxies
such as reputation, popularity, prestige, and socio-demographics
(12–15). The ability of human social networks to reorganize
in response to feedback has been shown to promote human
cooperation (9, 15, 16) and allows for cultural transmission
over generations to develop technologies above any individual’s
capabilities (17, 18).

However, there is substantial evidence showing that social
influence increases the similarity of individual estimates (19–22),
thereby compromising the independence assumption (i.e., that
individual errors are uncorrelated, or negatively correlated) that
underlies standard statistical accounts of “wisdom-of-crowds”
phenomena (23). Furthermore, while it is commonly assumed
that groups of individuals are correct in mean expectation (22,
24), humans’ independent estimates can be systematically biased
(25, 26). However, although these independence and collective
unbiasedness assumptions rarely hold in practice, the wisdom
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of crowds does emerge in human groups. Moreover, numerous
studies have offered conflicting findings: On the one hand, there
is evidence that social interaction can either significantly benefit
the group and individual estimates (21, 27, 28); or, on the other
hand, it can also lead them astray by inducing social bias, herd-
ing, and group-think (19, 20, 22). Notable efforts have focused on
providing a resolution to these inconsistent conclusions. Studies
have found that these divergent effects are moderated by placing
well-informed individuals in prominent positions in the network
structure (21, 22, 29); those individuals’ self-confidence (27, 30–
32); the group’s ability to identify experts (33); dispersion of skills
(34–36); quality of information (25); diversity of judgments (36,
37) or lack thereof (38); social learning strategies (39, 40); and
the structure of the task (35, 40). In other words, whether social
interaction is advantageous for the group depends on the envi-
ronment in which the group is situated (41). Given that people
often do not have access to all of the parameters of their envi-
ronment (or the environment can change), it is advantageous to
find an easy-to-implement mechanism that performs well across
shifting environments.

Theoretical and experimental work on collective intelligence
(including the reconciliation efforts mentioned above) has been
predominantly limited to frameworks where the communica-
tion network structure is exogenous, as well as when agents are
randomly placed in static social structures, such as dyads (27,
30), fully connected groups (20, 28, 42), or networks (21, 22).
However, unlike what is explicitly or implicitly assumed in most
existing work, the social networks we live in are not random, nor
are they imposed by external forces (43). Rather, these social net-
works are shaped by endogenous social processes and gradual
evolution within a potentially nonstationary social context. The
present study builds on the observation that agent characteristics,
such as skills and information access, are not randomly located in
a network structure. Intuitively, groups can benefit from award-
ing centrality to—and amplifying the influence of—individuals
with particular attributes (e.g., skillful or well informed). Con-
sequently, the distribution of agents is often the outcome of
social heuristics that form and break ties influenced by social and
environmental cues (12–14, 44). Therefore, neither the emer-
gent (“macroscopic”) structure nor individual (“microscopic”)
properties can be decoupled from the characteristics of the
environment (“context”). Hence, we hypothesize that dynamic
social-influence networks guided by feedback may be central
to context-adaptive collective intelligence (41), acting as core
mechanisms by which groups, which may not initially be wise,
evolve wisdom, adapting to biased and potentially nonstationary
information environments.

Study Design
In this paper, we test the hypothesis that adaptive influence net-
works may be central to collective human intelligence with two
preconditions: feedback and network plasticity. To this end, we
address the following four research questions: 1) Do groups of
interacting individuals outperform groups of unconnected indi-
viduals? 2) How does the plasticity of a network and the quality
of the feedback affect the performance of that network? 3) Does
the best individual in the group also benefit from social inter-
actions? 4) What are the mechanisms that drive the system’s
dynamics?

To answer these questions, we developed two web-based
experiments (i.e., E1 and E2) and a simulation model to identify
the role of dynamic networks and feedback in fostering adaptive
“wisdom of crowds.” In the two experiments, the participants
(NE1 =719;NE2 =702) recruited via the online labor market
Amazon Mechanical Turk (SI Appendix, Section 1) engaged in a
sequence of 20 estimation tasks. Each task consisted of estimat-
ing the correlation of a scatter plot, and monetary prizes were
awarded in proportion to the participants’ performance at the

end of the experiment. The participants were randomly assigned
to groups of 12. Each group was randomized to one of three
treatment conditions in E1, where we varied the network plas-
ticity; or four treatment conditions in E2, where we varied the
quality of feedback. To evaluate the generalizability of the find-
ings and tune intuition about the underlying mechanisms, we also
simulated a model of interacting agents in a separate context that
was similar to that of our experiments.

Estimation Task: Guess the Correlation Game. Earlier work demon-
strated that estimating the correlation in scatter plots is an
intuitive perceptual task that can be leveraged to investigate
various aspects of our visual intelligence (45). We chose this
judgment task for the following two reasons. First, this task can
be rapidly performed without requiring participants to have spe-
cialized skills (45). Second, the task structure is both simple
enough to vary systematically and rich enough to manipulate the
quality of the information provided to the participants. In par-
ticular, we used scatter plots with three levels of signal quality
(varying the number of points and adding outliers or nonlinear-
ities; Fig. 1A). At every round, all plots seen by the participants
shared an identical actual correlation. Still, the quality of the
signal among them could differ (confer ref. 46). The design
also allowed the simulation of a shock to the distribution of
information among the participants. Specifically, each partici-
pant experienced a constant signal-quality level across the first
10 rounds; then, at round 11, we introduced a shock by reshuf-
fling signal qualities to new levels that remained constant. The
participants were not informed about the signal quality they or
their peers faced (see SI Appendix, section 1 and Figs. S1 and S2
for further detail).

Experiment 1 (E1): Varies Network Plasticity; Holds Feedback. In the
first experiment (E1, N =719), each group was randomized to
one of the following three treatment conditions: 1) a solo con-
dition, where each individual solved the sequence of tasks in
isolation; 2) a static network condition, in which 12 participants
were randomly placed in static communication networks with
a fixed degree (i.e., each participant had exactly three neigh-
bors); and 3) a dynamic network condition, in which participants
at each round were allowed to select up to three neighbors to
communicate with. Across all conditions, at each round, the par-
ticipants were initially asked to submit an independent guess.
Then, those in static and dynamic network conditions entered
a social-exposure stage, where they could observe the answers
of their network peers, update their own, and see their peers’
updated beliefs in real time. After submitting a final guess, the
participants in all conditions were provided with performance
feedback. Finally, those in the dynamic network condition were
allowed to revise which peers to follow (up to three neighbors) in
subsequent rounds (see SI Appendix, Fig. S3 for the experimen-
tal design and SI Appendix, Figs. S4–S8 for the online platform
screenshots).

Experiment 2 (E2): Varies Feedback; Holds Dynamic Network. In the
second experiment (E2, N =702), each group was randomized
to one of the following four treatment conditions: 1) a solo con-
dition, where each individual solved the sequence of tasks in
isolation; however, this time no performance feedback was pro-
vided; 2) a no-feedback condition, in which the participants were
placed in a network, but were not shown any performance feed-
back; 3) a self-feedback condition, in which the participants were
placed in a network and shown their own performance feed-
back; and 4) a full-feedback condition, in which the participants
were placed in a network and shown performance feedback of all
participants (including their own). The participants in all condi-
tions in E2 were allowed to revise which peers to follow (up to
three total neighbors) in subsequent rounds, except for the solo
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Fig. 1. Experimental design. (A) Examples of the experimental task and the signal-quality levels. Provided are examples of the scatter plots used in the
experiment. For any given round, all participants saw plots that shared an identical true correlation, but signal quality among them varied. Task signal quality
was systematically varied at the individual level by varying the number of points, linearity, and the existence of outliers. The participants were not informed
about the signal quality they or other participants were facing. (B) The overall experimental framework. Shown is an illustration of the experimental design.
In experiment 1, the feedback level was fixed (i.e., full-feedback), and network plasticity was manipulated (i.e., a static network vs. dynamic network). In
experiment 2, plasticity was fixed (i.e., always dynamic network), and feedback was manipulated (i.e., no-feedback, self-feedback, and full-feedback). The
colors of the nodes represent the signal quality. Each participant experienced a constant signal quality level across the first 10 rounds; then, at round 11, we
introduced a shock by reshuffling signal qualities to new levels that remained constant for the remaining 10 rounds.

condition, which acted as our baseline. Fig. 1B illustrates the
overall experimental design.

Simulation: Varies Environmental Shock and Rewiring Rates. Finally,
we simulated interacting agents that update beliefs accord-
ing to a DeGroot process (47) and rewire social connections
according to a performance-based preferential attachment pro-
cess (48) (see SI Appendix, section 2 for further detail). Using
this model, we explored the effect of plasticity and the quality
of feedback to compare with our experimental findings, exam-
ine the robustness of our results under different parameter
values, and tune our intuition about the underlying mecha-
nisms. In these simulations, we also explored the interaction
between network adaptation rates—a network’s sensitivity to
changes in agents’ performance—and the rate of environmental
changes.

Results
Individual and Collective Outcomes. We first compared individual-
and group-level errors across all conditions. We observed that
networked groups across studies and conditions significantly out-
performed equally sized groups of independent participants.
This result is consistent with previous research on complex
problem-solving tasks (49, 50) and estimation tasks (21). Fig. 2
shows the individual and group error—using the arithmetic mean
as group estimate—relative to baseline errors (i.e., subtracting
the average error of the solo condition). Overall, we found that
the participants in dynamic networks with full-feedback achieved
the lowest error in both experiments. The dynamic networks,
in the presence of feedback, gradually adapted throughout the
experiment. The performance edge was more substantial in those

periods when networks had adapted to their information envi-
ronment (i.e., rounds [6, 10]∪ [16, 20]; hereafter referred to as
adapted periods).

In particular, in E1, as compared to the participants in static
networks, dynamic networks had, on average, 17% lower indi-
vidual error (β=−0.038, z =−4.64, P < 10−5; mixed model
described in SI Appendix, Table S1) and 18% lower group error
(β=−0.03, z =−3.25, P =0.001). The mixed model was con-
ducted based on the absolute errors, and the β coefficient refers
to the difference between conditions. The percentages refer to
the reductions in the absolute errors. In the adapted periods,
dynamic networks reduced individual error by 36% (β=−0.05,
z =−6.56, P < 10−6) and group error by 40% (β=−0.04, z =
−4.44, P < 10−5).

Our simulation results corroborate this experimental result.
We found that, in the presence of feedback, dynamic networks
adapted to changes in the information environment by shift-
ing influence to agents with better information, substantially
decreasing individual and group error compared to unconnected
groups (SI Appendix, Fig. S10).

In E2, as compared to the no-feedback condition, having self-
feedback marginally reduced the overall individual error (7%;
β=−0.015, z =−1.38, P =0.17) and significantly reduced it in
the adapted periods (21%; β=−0.037, z =−3.52, P =0.0004).
On the group level, self-feedback had, on average, 11% lower
error (β=−0.02, z =−1.66, P =0.096) and 29% in the adapted
periods (β=−0.038, z =−2.94, P =0.003).

On the other hand, the full-feedback condition had on aver-
age 20% lower individual error (β=−0.03, z =−3.3, P =0.001)
and 16% lower group error (β=−0.02, z =−2.25, P =0.024),
as compared to the participants in the self-feedback condition.
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Fig. 2. Individual and collective outcomes. (A–D) Groups connected by dynamic influence networks and provided with feedback incur substantially lower
individual errors (A and C) and lower collective errors (B and D). The reduction is notably larger and more significant in the periods where networks had
adapted to the information environment (i.e., rounds [6, 10] and [16, 20]). Errors are relative to the errors in the solo condition. Error bars indicate 95%
CIs. (A and B) Experiment 1: varying plasticity. (C and D) Experiment 2: varying feedback. E shows the basic overall (across the 20 rounds) mean absolute
individual and collective errors and SDs for all conditions.

In the adapted periods, full-feedback reduced individual error by
32% (β=−0.04, z =−4.99, P < 10−5) and group error by 29%
(β=−0.03, z =−2.99, P =0.0028; SI Appendix, Table S2).

As the full-feedback condition in E2 and the dynamic network
condition in E1 were identical (i.e., both dynamic network and
full-feedback), we considered them to be a replication of the
same condition across two studies. Indeed, no statistically signif-
icant differences between the two conditions were observed (SI
Appendix, Table S3).

In agreement with the experimental findings of E2, simula-
tion results confirmed that high-quality feedback is necessary for
enabling beneficial group adaptation through social rewiring. As
we added more noise to the peer-performance feedback, the col-
lective performance of adaptive networks deteriorated until it
converged to that of the simple wisdom of crowds (i.e., the solo
condition; SI Appendix, Fig. S11).

The Performance of the Best Individual. We found that even the
best individual benefited from network interaction. The best
individual within each group was determined based on ex post
revised estimate performances across all rounds [prior research
(51) refers to this as the “average best member”]—that is, based
on the quality of the postsocial interaction estimates. In particu-
lar, we found that the best individuals in the dynamic and static
conditions from E1 reduced their overall error by approximately
20% (P < 10−4). In E2, the best individuals in the full-feedback
condition reduced their error by 30% (P < 10−4), while the
best individuals in the self-feedback condition reduced their
error by 21% (P =0.009) and 15% in the no-feedback condition
(P =0.057). Again, these improvements were more apparent
in the adapted periods, except for the no-feedback condition,
where the best individual was not able to adapt (SI Appendix,
Table S4).

As the best individuals were determined based on the postso-
cial interaction estimates, it is possible that those same individu-
als were not the best based on the initial estimate performance.
Indeed, we observed that only 60% of the best presocial inter-
action individuals were also the best individuals after social
interaction. However, even the best individual based on the
presocial interaction performances benefited from group inter-
action. In particular, in E1, the best individuals in the dynamic
and static conditions reduced their overall error by about 7%
(P < 10−4). In E2, the best individuals in the full-feedback con-
dition reduced their error by 12% (P < 0.004). In contrast, the
best individual in the no-feedback and self-feedback conditions
did not improve.

Mean-Variance Trade-Off of Select Crowds. The results of our
experiments showed that the collective performance of groups
was not bounded by that of the best individual. In a further
exploratory analysis, we generalized the use of group means
as collective estimates and the definition of best individual to
analyze the performance of top-k estimates—that is, aggre-
gate estimates where only the guesses of the k best-performing
group members in our experiments (ranking based on cumulative
performance from prior rounds) were averaged. In particular,
top-12 estimates corresponded to the group mean (i.e., the
whole-crowd strategy) and top 1 to the estimate of groups’
best-performing individual (i.e., best-member strategy). Fig. 3
reports the mean and SD of estimation errors incurred by the
entire range of k (i.e., top-k or the select k crowd strategy)
estimates during the adapted periods. Ideal estimates would
minimize both mean error and variability (i.e., toward the [0,0]
corner). The qualitative shape of top-k curves reveals that, as
we removed low-performing individuals (from k =12 to k =1),
estimates initially improved in both mean and SD. Then, as
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by top-k estimates during the adapted periods (experimental data). Top-12
estimates correspond to the full-group mean and top 1 to the group’s best
individual. Error bars indicate 95% CIs.

we further curated the crowd (roughly—beyond k ≈ 4), top-k
estimates of the trade-off between decreasing mean error and
increasing variability finally regressed in both objectives as k→ 1.
As reported in a previous study, selecting an intermediate num-
ber of the best members strikes a balance between using the
best estimates, on the one hand, and taking advantage of the
error-canceling effects of averaging, on the other (35). Interest-
ingly, we found that the full-group average in dynamic networks
yielded 16% lower error (P =0.02; 500 bootstraps) and 39%
less variability (P < 10−5; 500 bootstraps) than the best individ-
ual in the solo with feedback condition (i.e., dynamic top 12 vs.
solo top 1).

Adaptive Mechanisms. The results supported our primary hypoth-
esis that network plasticity and feedback may provide adaptive-
ness that can benefit both individual and collective judgment.
To explain these results, we explored two mechanisms: global
adaptation and local adaptation.
Global adaptation: Network structure. The first mechanism we
explored was a global (or structural) mechanism, where, in
the presence of high-quality feedback, dynamic networks adap-
tively centralize over high-performing individuals. This behavior
was predicted by cognitive science and evolutionary anthropol-
ogy studies showing that people naturally engage in selective
social learning (13, 17, 35, 44)—i.e., the use of cues related
to peer competence and reliability to selectively choose who
we pay attention to and learn from. Fig. 4 A and B show that
the participants in dynamic networks used peers’ past perfor-
mance information to guide their peer choices. Specifically, the
overall correlation between popularity (i.e., number of connec-
tions) and performance (i.e., cumulative score) was strongest
for dynamic networks with full-feedback (r =0.62) as com-
pared to the self-feedback (r =0.3, z =−0.319, P < 0.001) and
no-feedback (r =0.2, z =−0.383, P < 0.001) conditions. As
rounds elapsed, performance information accrued, and social
networks evolved from fully distributed into centralized networks
that amplified the influence of well-informed individuals. Upon
receiving an information shock, the networks slightly decentral-
ized (β=−0.046, z =−4.042, P < 10−4; SI Appendix, Table S5),

entering a transient exploration stage before finding a config-
uration adapted to the new distribution of information among
the participants (see Fig. 4D for an example of the network
evolution).

Furthermore, using simulation, we explored the interaction
between network global-adaptation rates—a network’s rewiring
sensitivity to changes in agents’ performance—and the arrival
rate of environmental shocks. The results of these simulations
indicated that networks with higher adaptation rates are suit-
able for environments with frequent information shocks. Con-
versely, networks with slower adaptation rates could leverage
more extended learning periods, eventually achieving lower error
in environments with infrequent shocks (SI Appendix, Fig. S12).
This short-term vs. long-term accuracy trade-off implies that
optimal network-adaptation rates depend on the pace of changes
in the environment, analogous to notions of optimal adapta-
tion rates in natural systems (52) and learning rates in artificial
intelligence algorithms (6).
Local adaptation: Confidence self-weighting. However, network
centralization over high-performing individuals cannot account
for all of the results. First, a centralization mechanism alone
would suggest that group members may merely follow and
copy the best individual among them, hence, bounding collec-
tive performance by that of the group’s top performer, which
we found to be untrue (i.e., even the best individual, on aver-
age across rounds, benefits from group interaction). Second, we
found that, even in the absence of feedback, there was still a
correlation between popularity and performance (Fig. 4B) that
was similar to the self-feedback condition, but weaker than the
full-feedback condition. Therefore, the first mechanism alone
would not explain why the participants in the self-feedback con-
dition in E2 (but not those in the no-feedback condition) were
able to adapt.

However, previous research on the two-heads-better-than-one
effect indicated that, in the more straightforward case of dyads,
even the best individual can benefit from social interaction (27,
30) and that the critical mechanism enabling this effect is a
positive relationship between individuals’ accuracy and their con-
fidence. This is a plausible local mechanism that can work in con-
junction with both dynamic and static networks, as well as with or
without feedback. Fig. 4C shows that, overall, the participants in
the networked conditions had a positive correlation between the
accuracy of their initial estimates and their confidence (measured
behaviorally using the “weight on self” measure; Materials and
Methods). The participants were likely to rely on private judg-
ments whenever these were accurate and on social information
otherwise. This positive correlation of confidence and accuracy
is consistent with reported findings (21, 31). This mechanism
allows the group members to exploit the fact that the “average
best performer” is usually not the best on every single task item.
That is, on some task instance, one or more other members may
be the best. Therefore, even the group’s best performers can
benefit from interacting with others if they are less resistant to
social influence on the instances where they are incorrect. This
mechanism also allows the individuals in the no-feedback con-
ditions to overcome the absence of feedback by exploiting the
round-by-round covariation between their own internal decision
confidence (i.e., how certain they are) and the answers of their
peers (53, 54). That is, if an individual is confident that she or he
is right (according to his or her inner confidence), she or he can
be equally confident that any neighbor who disagrees with him or
her is wrong and, accordingly, down-weight his or her estimate in
future rounds (or break ties). Therefore, even in the absence of
explicit feedback, confidence is used as a signal to learn about
the reliability of peers and could explain the positive correlation
between popularity and performance. Moreover, Fig. 4C also
shows that, as rounds elapsed, the participants in the full- and
self-feedback conditions used the explicit performance feedback
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Fig. 4. Mechanisms promoting collective intelligence in dynamic networks. A shows that the network becomes more centralized with time (Freedman’s
global centralization ∈ [0, 1]—i.e., how far the network is from a star network structure). B depicts the relation between performance (i.e., average error)
and popularity (i.e., number of followers). C shows the correlation between the accuracy of initial estimate and confidence (i.e., the degree to which
participants resisted updating their initial estimate toward their peer’s estimates; Materials and Methods). Error bars indicate 95% CIs. D shows an example
of the network evolution in one experimental trial. The circle color represents performance. The size of each circle represents the number of followers (i.e.,
popularity). The dashed orange line is the distribution of estimates before social influence; the solid blue line is the distribution of postsocial influence
estimates. The dashed vertical line is the true correlation value. Corr, correlation.

to calibrate their accuracy–confidence relationship further and
were able to gradually readapt upon the shock.

Another plausible mechanism for the superior performance of
the connected groups in our experiment is group-to-individual
transfer (55). That is, group interaction might enable the mem-
bers to come up with better individual (i.e., presocial interac-
tion) estimates, and averaging these improved estimates leads
to better group performance as compared to the solo estimates.
However, since there were no significant differences between
the quality of initial estimates across conditions, we found no
evidence for this mechanism (SI Appendix, Fig. S15).

Discussion
Previous research on collective intelligence and social influ-
ence has not considered several aspects widespread in natu-
ral situations: 1) the rewiring of interaction networks; 2) the
role of performance feedback; and 3) changing environmental
conditions (i.e., shocks). In this study, we demonstrated that
dynamic influence networks could adapt to biased and nonsta-
tionary environments, inducing individual and collective beliefs
to become more accurate than the independent beliefs of best-
performing individuals. We also showed that the advantages
of adaptive networks are further amplified in the presence of
high-quality performance feedback. Taken together, our results

suggest that details of interpersonal communications—both in
terms of the structure of social interactions and the mecha-
nism of its evolution—can affect the ability of the system to
promote adaptive collective intelligence. This provides evidence
that dynamism of the networks has profound effects on the
processes taking place on them, allowing networks to become
more efficient and enabling them to better adapt to changing
environments.

Although laboratory experiments are abstractions of real-
world situations that have been deliberately simplified in order
to test theories, drawing conclusions of immediate practical
relevance would require performing far more realistic and com-
plicated follow-up experiments. We also acknowledge that—as
for most social systems—even subtle changes in environmental
conditions (e.g., how a situation is framed, incentive structure,
or the participants’ identities) can yield different outcomes (56).
Said differently, even the results of a well-designed and highly
realistic experiment may not generalize reliably beyond the
specific conditions of the experiment. For instance, we spec-
ulate that network structure distortions to individuals’ local
observations—such as information gerrymandering (57) and
majority illusion (58)—may discourage the participants from
searching for peers with high signal quality in a dynamic net-
work with limited feedback. Therefore, robust knowledge of the
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conditions in which dynamic networks would lead to the wis-
dom of the crowd (as opposed to the madness of the mob)
will require orders-of-magnitude more experiments where the
available time, group size, task type, incentive structure, level
of dispersion in abilities, group-interaction parameters, and
many other potentially moderating variables would be manip-
ulated. Although such a program is currently infeasible (or
logistically challenging), “virtual laboratory” experiments, com-
bined with numerical simulations of the type conducted in the
present study, offer a promising route forward. We hope that
the adaptive systems and environment-dependent views on col-
lective intelligence will spur the establishment of connections
with a variety of fields and advance an interdisciplinary under-
standing of the design of social systems and their information
affordances.

Materials and Methods
The study was reviewed and approved by the Committee on the Use of
Humans as Experimental Subjects at the Massachusetts Institute of Tech-
nology. All participants provided explicit consent. The experiment was
developed by using the Empirica platform (59).

Statistical Tests. All statistics were two-tailed and based on mixed-effects
models that included random effects to account for the nested structure of
the data—details of the statistical tests are in SI Appendix, Tables S1–S5.

Measuring Confidence. Our behavioral measure of confidence was inspired
by the weight on the self (WOS) measure frequently used in the literature on
advice taking (60, 61). WOS quantifies the degree to which people update

their beliefs (e.g., guesses made before seeing the peers’ guesses) toward
advice they are given (the peers’ guesses). In the context of our experiments,
it is defined as

WOS := (u2−m)/(u1−m),

where m is the neighbors’ average initial guess of the correlation, u1 is
the participant’s initial guess of the correlation before seeing m, and u2 is
the participant’s final guess of the correlation after seeing m. Note that the
denominator takes into account where the participants fall in the distribu-
tion of estimates that they see. The measure is equal to 0 if the participant’s
final guess matches the neighbors’ average guess, 0.5 if the participant
averages their initial guess and the neighbors’ average guess, and 1 if the
participant ignores the neighbors’ average guess.

Network Centralization. To quantify the network centralization, we used
Freedman’s centrality (62) that calculates the sum in differences in centrality
between the most central node in the network and all other nodes relative
to the theoretically largest such sum of differences (i.e., a star network—in
which all nodes are directly connected to a common central node—of the
same size):

Cx =

∑N
i=1 Cx(p*)− Cx(pi)

max
∑N

i=1 Cx(p*)− Cx(pi)
,

where Cx(pi) is the in-degree (number of followers) of individual i, Cx(p*)
is the in-degree of the most popular individual, and max

∑N
i=1 Cx(p*)−

Cx(pi) = [(N− 1)(N− 2)]is the theoretically largest sum of differences. Freed-
man’s centralization is defined to be in the range of 0.0 (most decentralized
structure—regular graph) to 1 (most centralized structure—star network).

Data Availability
Replication data and code are available at the Harvard Dataverse,
https://doi.org/10.7910/DVN/EOYZKH (63).
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