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Gene synthesis allows biologists to source genes
from farther away in the tree of life
Aditya M. Kunjapur 1,5, Philipp Pfingstag2,6 & Neil C. Thompson 3,4

Gene synthesis enables creation and modification of genetic sequences at an unprecedented

pace, offering enormous potential for new biological functionality but also increasing the need

for biosurveillance. In this paper, we introduce a bioinformatics technique for determining

whether a gene is natural or synthetic based solely on nucleotide sequence. This technique,

grounded in codon theory and machine learning, can correctly classify genes with 97.7%

accuracy on a novel data set. We then classify ∼19,000 unique genes from the Addgene non-

profit plasmid repository to investigate whether natural and synthetic genes have differential

use in heterologous expression. Phylogenetic analysis of distance between source and

expression organisms reveals that researchers are using synthesis to source genes from more

genetically-distant organisms, particularly for longer genes. We provide empirical evidence

that gene synthesis is leading biologists to sample more broadly across the diversity of life,

and we provide a foundational tool for the biosurveillance community.
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B iologists and bioengineers often transfer genes across
organisms to test genetic hypotheses or to endow
their favorite model organisms with novel traits or

functionality1,2. In the first industrial example of recombinant
DNA technology, Eli Lilly and Genentech expressed a synthetic
gene encoding human insulin in the model bacterium Escherichia
coli for drug manufacturing3. Soon afterwards, biologists began
sourcing genes encoding thermostable polymerases4 from ther-
mophilic bacteria and the well-known green fluorescent protein
(GFP)5 from the jellyfish as research tools. More recent biological
research focused on mammalian models has featured consider-
able introduction of bacterial genes, notably the targeted genome
editing tool CRISPR-Cas96–8 and tools for optogenetics9,10. The
growing field of synthetic biology also drives gene transfer
because the genome sequences of non-model organisms present a
treasure trove of potentially novel and orthogonal genes for
testing in model organisms11,12.

Using DNA synthesis to transfer synthetic gene sequences
from one organism to another may succeed where transferring
natural gene sequences would fail. Although natural genes have
the potential for direct transfer from one organism to another
because of the universality of the genetic code, many such
sequences would express poorly when moved into a new organ-
ism because of differences in codon usage, GC content, or
the presence of expression-limiting regulatory elements13,14.
These concerns only worsen as sequence length increases because
the potential for problematic codons increases, as does the time
required to manually convert these codons using PCR-based or
restriction enzyme-based approaches. Such constraints can limit
what genetic engineers accomplish.

In contrast with these restrictions on moving genes using
traditional methods, gene synthesis can faithfully and rapidly
recode natural sequences of large lengths15,16. Recoding algo-
rithms harness synonymous codons that more closely reflect
the expression organism and preserve the natural protein
sequence17. Though the subtle implications of codon choice for
the rate and quality of protein production are still being
understood18,19, such codon-optimization is so valuable for
expression that commercial gene synthesis service providers
typically offer this option by default. We posit that codon-
optimization offers a promising way to identify synthetic genes
and the engineered organisms that contain them and thus
provides the first way, to the best of our knowledge, to identify
synthetic sequences from sequence alone. In the past, such
engineering efforts could have been detected through the scars
from gene editing, but such methods are becoming obsolete
because of advances in scar-less molecular cloning20,21 and
genome engineering techniques22.

The ability to accurately identify synthetic genes enhances
biosurveillance for organisms taking on non-native traits, which
may be harmful or illicit. Although commercial DNA synthesis
suppliers screen orders for similarity to select agents23–26,
detection of synthetic genes within organismal genomes is par-
ticularly valuable for cases where conventional biosecurity control
could be circumvented, such as when synthesis is done on a non-
regulated machine. Such detection is also relevant for biosafety in
the event of accidental release of engineered organisms. The
importance of additional biosurveillance capability has been
articulated widely, for example by a major U.S. bipartisan bio-
defense study27, ongoing U.S. intelligence agency research pro-
grams28 and in agricultural contexts by the USDA Animal and
Plant Health Inspection Service29. Furthermore, a June 2018
report commissioned by the U.S. National Academies identified
that making existing bacteria more dangerous and in situ pro-
duction of harmful biochemicals are two topics that warrant the
most concern30.

In addition to its biosecurity relevance, such classification
could shed light on whether researchers in the life sciences are
using synthetic genes differently than natural genes. We investi-
gate these trends in the Addgene plasmid repository31, which is a
fruitful place to investigate these trends because it is a go-to
repository for academic access to plasmids32, as well as the most-
used source for CRISPR-Cas933. This prominence is evidenced in
the rapid rise of the number of plasmids deposited over time
(Fig. 1a), orders per year (Fig. 1b), and new labs depositing
plasmids (Fig. 1c). Addgene is also used across a wide variety of
expression platforms (Fig. 1d). Furthermore, the Addgene data-
base has the distinct advantage of being publicly viewable (in
contrast with the undoubtedly large, but proprietary databases in
the biotechnology industry). Reliance on synthesis is likely to be
most important for long sequences, where codon mismatches
would be more challenging to address with traditional methods
and for sequences transferred to more dissimilar organisms where
the codon mismatch would be greatest14. At the same time, gene
synthesis is usually more expensive than amplification of natural
DNA, and synthesis cost, time, and error rates increase as
sequence length increases15. Thus, we expect to see differential
usage patterns in the Addgene data: with natural sequences used
for shorter, genetically-proximate transfer and synthetic sequen-
ces used for longer, genetically-distant transfer. Ideally, our
hypothesis on genetic distance could be tested directly using
codon usage mismatch, but because codon usage tables are not
available for many of the organisms that we study, we instead test
our hypothesis using a correlate34: evolutionary genetic distance.

Based on the biological and engineering implications of
synthesis, we postulate a set of features that have the potential to
distinguish synthetic sequences. To discern which of these are
most predictive, we construct two reference sample sets, each
comprised of known synthetic and known natural sequences.
Using the first of these, our training set, we evaluate the predic-
tiveness of the features using machine learning techniques.
Interestingly, some commonly-known distinguishers (e.g., rare
codon content) provide no additional benefit for our predictor.
Having decided on a predictor, we examine its predictiveness out-
of-sample using our larger second reference sample or test set.
We can correctly classify 97.7% of those sequences, confirming
that our scalable, sequence-only method for detecting synthetic
genes is highly effective. After analyzing ~19,000 Addgene
sequences, we find that the average genetic distance between
source and expression organism is greater for synthetic genes
than natural genes and that this difference increases at longer
sequence lengths. Our findings of how gene synthesis is being
used in public repositories reinforce the importance of our
technique for biosurveillance and affirm that synthesis accelerates
human-directed gene transfer across the tree of life.

Results
Classification scheme for natural or synthetic genes. Many
plausible definitions could be used for defining whether a
sequence is natural or synthetic. We define a natural gene
sequence as one that is found in naturally occurring genomes or
metagenomes, including sequences that contain small deviations
such as those resulting from natural evolution or from minor
human interventions such as appending of short tags. We also
consider complementary DNA (cDNA) sequences as natural
given that they can be generated from naturally occurring mes-
senger RNA using reverse transcription. In contrast, we apply the
term synthetic to gene sequences that contain significant devia-
tions from any single known contiguous naturally occurring
sequence. We determined what constituted a significant deviation
empirically by applying machine learning techniques to training

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06798-7

2 NATURE COMMUNICATIONS |          (2018) 9:4425 | DOI: 10.1038/s41467-018-06798-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and test sets of natural and synthetic sequences that we validated
manually by sourcing them from sequence databases or from
publications. Our definition is pragmatic and has limitations
which reflect that we are only using the nucleotide sequence for
the classification. For example, it is necessarily the case that if a
researcher ordered synthesis of a gene sequence that was identical
in every base to a natural sequence, we would classify that gene as
natural.

To learn which attributes best predict this classification, we
considered two sets of quantitative attributes: intrinsic properties
that we could determine from the sequence (such as GC content
and rare codon percentage); or comparative properties that we
could determine through similarity comparisons with a reference
sequence database (such as query coverage—“QCov”—or per-
centage identity – “%Id”) (Fig. 2a, see Methods for full set of
properties considered). We hypothesized that most of these
properties would improve classification accuracy. To gather the
comparative information, we used nucleotide Basic Local
Alignment Search Tool35,36 (BLASTn) to test each sequence
against the National Center for Biotechnology Information
(NCBI) RefSeq database, a comprehensive database of naturally
occurring genomes, metagenomes, and cDNA libraries37,38, and
extracted comparison data for the best alignment entry.

Because many published or publicly disclosed codon-
optimization procedures use a weighted Monte Carlo approach
proportional to codon abundance (or codon adaptation index,

CAI)39–43, we surmised that there might be an effective cutoff
value for %Id below which there should only be synthetic
sequences. To quantify this theoretical cutoff, we pursued two
strategies. First, we computed the average expected %Id of a
nucleotide sequence assuming randomized codon-substitution
without weighting by the codon usage of any particular organism.
Each codon substitution thus produced an expected %Id based
only on the number of codon possibilities for each amino acid
and the nucleotide substitutions between them. Weighting these
values by the amino acid occurrence frequency in nature44

indicates that a randomly codon-substituted sequence should,
on average, have 78 %Id compared to the starting non-substituted
sequence (Supplementary Tables 1–3). This provides the baseline
against which we compare our second strategy, which tests the
expected %Id from codon-optimization for specific organisms.
We did stochastic simulations of all potential pairs of 16 different
organisms, using their actual codon usage tables. On average,
these simulations provided similar results. For example, expres-
sion of human sequences in other organisms (Fig. 2b) had an
average of 75 %Id. All simulation averages fell below 85 %Id.
Codon optimization across other organism pairs revealed
important variation from the 75 %Id average: organisms with
highly-dissimilar codon usage produced 65 %Id on average,
whereas optimizing organisms with highly-concentrated codon
usage back to themselves produced 85 %Id on average (overall
distribution summarized in Fig. 2c, the ‘shoulders’ of which, at 65
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Fig. 1 Descriptive statistics of the Addgene plasmid repository, a representative source of sequences used in academic biological research. a Number of
plasmids deposited per year during 2006–2015 in Addgene. b Number of orders per year from Addgene. c Number of unique depositing principal
investigators (PIs) per year. d Share of deposits and orders for plasmids across different expression platforms
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and 85%, represent these extremes). Because model organisms
contain more typical codon usage, transfers of genes between two
organisms with extreme codon-usage are infrequent. Together
our theoretical analysis suggests that Monte-Carlo based codon
optimization methods leave telltale signals in the %Id when
compared back to the pre-codon-optimization sequence.

To empirically determine which attributes could inform
our classification and what quantitative thresholds would
be appropriate, we pursued a supervised machine learning
approach that considered the full set of previously mentioned
variables. We constructed a training set consisting of 83 gene
sequences populated with natural and synthetic genes for
expression in E. coli, Saccharomyces cerevisiae (baker’s yeast),
and Homo sapiens (Supplementary Tables 4–11). Synthetic
genes included in training and test sets were identified from
several independent databases using keyword searches for
terms such as “synthetic” or “codon-optimized” and manually
verified from user-provided annotation or the methods section
from the corresponding publication. We applied random forest
machine learning45,46 to this training set and determined that
sequence %Id below 85% was the best predictor of a synthetic
sequence, aligning well with our theoretical results. Using this
classification criterion on a test set of 173 manually identified
sequences yielded 97.7% accuracy (Fig. 2d). This also aligns well
with our theoretical simulation results, which predict that
98.6% of synthesized sequences will lie below the 85 %Id
threshold. To further validate this threshold, we performed a
simple parameter sensitivity analysis using our test set. This
demonstrated that other %ID cutoffs are not as effective
(Supplementary Table 12). Interestingly, our random forest
approach did not identify GC content or rare codon content as
an effective predictor.

Application of the classification scheme to the Addgene data.
We applied our classification scheme to the 19,334 unique genes
contained in the Addgene database from 2006–2015 to determine
which were synthetic and which were natural (Fig. 2e). For this
analysis, we excluded genes encoding known antibiotic resis-
tances based on BLASTn of the Addgene database against refer-
ence antibiotic resistance sequences. We also excluded genes that
were likely to encode fusion proteins (see Online Methods).

We found that the share of synthetic gene sequences deposited
in Addgene has increased over time (Fig. 2f). By 2015, synthetic
sequences made up over 20% of the genes in newly deposited
plasmids, up from less than 1% in 2006. The increasing
abundance of synthetic sequences is consistent with the order
of magnitude decrease in the cost of gene synthesis over this
period47,48.

Examination of differential transgene expression. Using our
classification and BLASTn results, we investigated patterns of
source and expression organisms for natural and synthetic gene
sequences. Because Addgene expression fields contained terms
broader than specific organisms, we grouped expression into six
categories: Mammalian, Worm, Insect, Plant, Yeast, and Bacteria
(Supplementary Table 13) and use this as the expression organ-
ism. We determine the source organism by considering the
organism corresponding to the best alignment entry (also known
as the maximal-scoring segment pair) for a gene sequence. An
alternative approach to finding the source organism would have
been to use BLASTx to identify the source organism in addition
to BLASTn to identify %QCov and %Id. In practice such an
approach has important drawbacks, for example more sparsely
populated reference databases (see Online Methods).
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Many synthetic sequences resulted in no BLAST alignment to
any sequence in the RefSeq database, and these were designated
as “No Hit.” Sequences that result in “No Hit” are likely to be de
novo synthetic sequences that deviate from any known protein.
We report the proportion of sequences that fit into this category
and where they are expressed because this is of independent
interest, but we ignore these sequences for subsequent genetic
distance calculations since they lack a source organism.
Additionally, for sequences that best aligned to viral sequences,
we included a “Virus” category that exists outside of taxonomic
relationships for living organisms. We binned all sequences with
available source organisms by phylum in accordance with NCBI
taxonomic practice.

A precise determination of genetic distance between source and
expression organisms is not possible using existing taxonomic
systems because they are not quantitative and because such
comparisons cannot be made at the phylum level. Instead we
estimate genetic distance using 16 S or 18 S ribosomal RNA
(rRNA) sequence from the SILVA database49. rRNA is highly
evolutionarily conserved and can function as an evolutionary
chronometer since 18 S rRNA is the eukaryotic nuclear homolog
of 16 S rRNA in prokaryotes50,51. We constructed a phylogenetic
tree using the web tool Phylogeny.fr52 and extracted genetic
distance estimates for each source-expression pair based on the
most-common organism in that phylum in the Addgene database
(Fig. 3a and Supplementary Fig. 1). These genetic distances
represent the fraction of mismatches at aligned positions, as is
conventional in phylogenetic analysis. Because we are measuring
the distance between the source and expression organisms (and
not to the specific query sequence), our measure of genetic
distance for the usage of a sequence is independent of whether or
not it is classified as synthetic.

We display heatmaps showing the number of natural and
synthetic gene sequences in the Addgene database corresponding
to source-expression category pairs across the 22 most common
phyla (Fig. 3b). From these heatmaps, we can make several
observations about the relative magnitude of phylum sourcing,
the kinds of gene transfers occurring, and the differences in these
aspects between natural and synthetic genes. Though the most
common expression system for Addgene plasmids is Mammalian,
the largest source of unique gene sequences by a significant
margin based on BLASTn is Phylum Proteobacteria. The next
largest sources of unique gene sequences are Phylum Chordata,
viruses, and Phylum Cnidaria, respectively. This may reflect the
relative focus on studying vertebrate and viral genes, as well as the
importance of GFP in biological research. Sequences sourced
from Proteobacteria are used at approximately similar levels in
Mammalian and Bacterial expression systems, regardless of
whether the sequence is identified as natural or synthetic. On
the other hand, sequences sourced from Chordata are predomi-
nantly used in Mammalian expression systems, regardless of
whether the sequence is identified as natural or synthetic.

These heatmaps demonstrate significant transgene expression
for both natural and synthetic gene sequences. The most frequent
type of transfer is from source phylum Proteobacteria to
Mammalian expression. Though this may be consistent with
the predominance of deposits and orders of mammalian
expression constructs from Addgene, it is striking that the
frequency of transfer from the source phylum Chordata to
bacterial expression (essentially the reverse phenomenon) is far
lower. A higher-level pattern observable in the heatmaps of
Fig. 3b is their relationship with genetic distance shown in Fig. 3a.
If genes were being most commonly expressed in their source
organism, one would observe hotspots in Fig. 3b along a diagonal
axis roughly from upper-left to lower-right. These hotspots are
clear for animal expression platforms for both natural and

synthetic genes. For natural genes, the pattern extends into many
bacterial sequences (hotspots on the lower-right). However, for
synthetic genes there is a marked change in the trend for
bacterially sourced sequences. Hotspots frequently appear on the
lower-left, indicating a high-frequency of mammalian expression
of bacterially derived, synthetic sequences.

Genetic distances between source and expression organisms.
From these heatmaps it is difficult to quantify the differences in
expression of natural and synthetic genes. Thus, we calculated
genetic distances between the source and expression organism for
each sequence. Overall, consistent with our main hypothesis, we
find that the average genetic distance between source and
expression organisms is greater for synthetic than for natural gene
sequences, and that this distinction is highly statistically sig-
nificant. Table 1 shows these results through a series of regression
specifications. In all cases, Synthetic is a binary variable which is 1
if our classification system deems that sequence synthetic, and 0
otherwise. Specification (1) shows that expression with synthetic
sequences is, on average, 0.077 units (t-test p-value < 0.01) farther
from the source organism than are natural sequences. Specifica-
tion (2) shows that the gap between the genetic distance between
synthetic and natural sequence use grows with sequence length,
with each extra kilobase adding 0.117 units (t-test p-value < 0.01)
to the difference. Specifications (3) and (4) confirm the finding of
specification (2), but use the alternative dependent variable Cross
Kingdom, which is a binary variable equal to 1 if the expression is
cross-kingdom and 0 otherwise. These trends remain even if
CRISPR-Cas9 sequences are excluded from the analysis (Sup-
plementary Table 14). Figure 4 uses a non-parametric local
regression (loess) to show the relationship between gene length
and genetic distance, for both natural and synthetic sequences.
The shaded regions represent one standard error.

Our results suggest that the longer a natural gene sequence is,
the less likely it is to be transferred into another organism by
researchers. This observation is consistent with the perception
that longer unmodified gene sequences are generally more
difficult to express and that, as sequence length grows, so does
the likelihood that there will be sequence regions that are
troublesome to express in another organism. In contrast,
synthetic sequences experience little to no drop in genetic
distance as gene length grows, and at large lengths are used
predominantly for transfer across distant organisms. Thus we
conclude that gene synthesis enables transgene expression at a
much higher rate than traditional techniques, and that this
difference is both scientifically and statistically significant.

Discussion
This paper introduces a nucleotide-only-based method for
determining whether a genetic sequence is synthetic or natural.
Grounded both in codon theory and in empirical testing using
machine learning, we find that we can correctly predict with
97.7% accuracy on a novel data set. The key heuristics that enable
this classification are the percentage nucleotide identity and query
coverage of a gene sequence compared across a reference database
of natural sequences. Somewhat surprisingly, our machine
learning approach did not find GC content or rare codon usage to
be an effective predictor. Very usefully, BLASTn queries against
the RefSeq genomic collection simultaneously provide the data
needed for sequence classification, as well as the organismal
origin of the gene.

Using our classification method and phylogenetic distance
calculations on sequences in the Addgene database, we provide
empirical evidence that gene synthesis is being widely used by
practitioners to source genes from genetically-distant organisms,
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which is a finding of important consequence for biotechnology
and biosurveillance communities. The genetic distance between
the organism used for gene expression and the organism from
which the gene was sourced is not only notably more distant for
synthetic rather than natural sequences, but this gap grows as
sequence length increases. Our finding sheds light on the tension
in using synthesis for longer gene sequences. On one hand, a

longer natural gene sequence would be more likely to contain
codons problematic for gene transfer, making synthesis more
attractive for these sequences. On the other hand, methods and
pricing for synthesis vary widely based on DNA length15, and
thus community behavior may be influenced by many factors
including size limits on common synthetic gene offerings (e.g.,
gBlocks from Integrated DNA Technologies) towards not using
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synthesis for long sequences. Our results suggest that, at the
margin, scientists are more influenced by the ability of gene
synthesis to access the treasure trove of natural genetic diversity
and transfer it to new organisms.

Determining the provenance of a genetic sequence is typically
the first step of forensic attribution associated with bio-
surveillance. As gene synthesis technology is further democratized
and genetically-engineered organisms increase in capability, such
sequence classification tools are vital to identifying and mon-
itoring engineered organisms that may be accidentally or delib-
erately released into new environments. Commercial gene
synthesis suppliers already provide some security in this area by
screening orders for potentially hazardous sequences24. But, as a
major U.S. bipartisan biodefense study27 and ongoing U.S.
intelligence agency research programs28 recently highlighted,
there are limited tools to detect engineered organisms, which may
have been constructed by circumventing gene synthesis regula-
tions. In these circumstances, there is significant value in being
able to analyze the sequences after-the-fact, for example based on
an environmental sample obtained from a suspicious site.

The classification method reported here can form part of a
suite of tools and strategies that help identify an engineered
organism (see Supplementary Discussion for a proposed work-
flow). Once an organism of interest is isolated, conventional tools
can be used for whole genome sequencing, de novo genome
assembly or reference genome alignment, and then open reading
frame (ORF) detection. Our classification scheme can subse-
quently be applied to a subset of ORFs or every ORF to identify
synthetic genes. Since transfer of natural genes is also of interest
for biosecurity purposes, our more general approach of using
existing BLASTn and phylogenetic tools to examine ORFs can
help identify transgenes and evaluate the likelihood of horizontal
or engineered transfer. If an engineered organism cannot be
isolated and is part of an impure environmental sample, addi-
tional approaches such as 16 s rDNA sequencing and knowledge
of environmental baselines may be needed. Upon identification of
a synthetic gene, BLAST can provide functional annotation
and guide response strategies to the engineered organism har-
boring the synthetic gene. For example, these approaches would

accurately identify a recently engineered yeast strain designed to
produce opioids as numerous synthetic genes were required to
achieve this feat53. Other approaches would be needed to identify
engineering modifications to non-ORF regions as these are out-
side the scope of our tools.

A particularly apt setting for our approach is agricultural risk.
For decades, through the Coordinated Framework for Regulation
of Biotechnology, the USDA Animal and Plant Health Inspection
Service has had oversight of genetically engineered organisms that
may pose agricultural risk29. However, genetically modified
organism (GMO) detection in agriculture has been limited to
PCR-based methods with primers designed to target known genes
associated with GMOs, which are most commonly synthetic
transgenes54,55. Detection of GMO crops or food ingredients is of
heightened interest in the European Union given stricter reg-
ulation. While state of the art methods for GMO detection in the
EU have featured more extensive databases, they remain asso-
ciated with PCR methodology. The Joint Research Center (JRC)
of the European Commission constructed the GMOMETHODS
database which contained 118 different PCR methods allowing
identification of 51 single GM events and 18 taxon-specific genes
in a sample as of 201256. In 2015, the JRC followed up with a
database specifically aimed at storing GMO-related sequences
called JRC GMO-Amplicons57. Though the database name refers
to amplicons, the authors note that the availability of an updated
GMO sequence databases has increased relevance after the advent
of next-generation sequencing. When coupled with next-
generation sequencing, our classification method should provide
a more general and complementary approach to comparisons
against known GMO-associated sequences because it can identify
uncatalogued synthetic transgenes, such as those not intended for
crop enhancement. In addition to agriculturally oriented agencies,
public health, environmental, and biosecurity agencies would
benefit from the ability to screen for untargeted genes in organ-
isms to identify unusual risks. Engineered organisms containing
synthetic genes are of particular interest because in academic
settings they have been demonstrated to produce non-native
illicit substances53, to express non-native toxins58, or to execute
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Table 1 Regression results comparing natural and synthetic
sequences from the Addgene Database

Dependent variable:

Genetic
distance

Genetic
distance

Cross
kingdom

Cross
kingdom

OLS OLS OLS Logit

(1) (2) (3) (4)

Constant 0.499*** 0.606*** 0.572*** 0.452***
(0.006) (0.009) (0.007) (0.035)

Synthetic 0.077*** −0.041 −0.017 −0.228**
(0.018) (0.029) (0.022) (0.093)

Gene length [kb] −0.112*** −0.098*** −0.587***
(0.007) (0.005) (0.035)

Gene length
[kb] * Synthetic

0.117*** 0.076*** 0.495***
(0.013) (0.010) (0.049)

Observations 14,745 14,745 14,745 14,745
R2 0.001 0.018 0.023
Adjusted R2 0.001 0.018 0.023
Log likelihood −10,000
F statistic 17.82 91.8 115.72

*p < 0.1; **p < 0.05; ***p < 0.01
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complex programs designed to alter human cell fates59. Fur-
thermore, engineered microbes released into the environment can
persist for years60,61. Because the RefSeq reference genome col-
lection includes pathogen genomes, our classification approach
can also be used to identify gene transfers into known pathogens.

As an enabling technology for life science research, gene
synthesis has changed the behavior of scientists. In the absence of
affordable gene synthesis, researchers could look for parts in a
narrow genetic neighborhood where transfer would be relatively
easy, or source more broadly across organisms at the cost of
potentially incurring much greater engineering effort with little
guarantees of eventual success. Today those same researchers can
source their parts from wherever makes the most biological sense
with the knowledge that gene synthesis should help them over-
come one of the main expression challenges. As such, gene
synthesis could allow biologists to source genes from farther away
in the tree of life. This paper shows that it does, providing a
bird’s-eye view of the community’s preference for relying on gene
synthesis to transfer genes across large genetic distances. This
trend promises to be of scientific, industrial, and medical use, to
the great benefit of biologists and society at large. At the same
time, society must be prepared in the event of accidental or
deliberate release of genetically engineered organisms, and tools
for synthetic sequence identification constitute a foundational
part of these efforts.

Methods
Codon-substitution sequence percentage identity calculation. As a first
approximation for a cutoff value for sequence percentage identity, we calculated the
expected sequence identity of any given gene sequence after codon substitution,
without accounting for the relative differences in codon usage (Supplementary
Table 1). First, we determined the expected percentage identity associated with
codon-substitution at the amino acid level. Barring very rare exceptions, the 20
canonical amino acids are each encoded by the same codons throughout all known
life. For all but three amino acids, the third nucleotide in the codon is the only
variable position. At the codon level, this means that the sequence encoding an
amino acid with two codon choices will either remain identical after optimization
(3/3 bases unchanged) or be 67% identical (2/3 bases unchanged). Thus, for amino
acids with only two synonymous codon choices, the average expected sequence
percentage identity is 83%. Similarly, amino acids with four codon choices have an
average expected percentage identity of 75% after codon-substitution. The three
amino acids feature nucleotide changes at positions other than just the third
position. These each have six codon choices. For two of these amino acids—R
(arginine) and L (leucine)—there are two codons where the first nucleotide also
varies. This case is illustrated in Supplementary Table 2 for R. An R or L codon is
expected to have 61% sequence identity on average after optimization. In the case
of S (serine) (Supplementary Table 3), two of the six codon choices have differences
in the first and second nucleotide in addition to the usual third nucleotide varia-
tion. Thus, after determining the expected percentage identity associated with
codon-substitution for each amino acid, we obtained a weighted average of 78%
using the natural frequency of occurrence of each amino acid44. Creating a
threshold level that separates natural and synthetic would need to be higher than
this, to account for random variance of codon usage. To do this, and more precisely
align with actual amino acid usage, we performed a simulation.

Codon-optimization stochastic simulation. We performed a stochastic simula-
tion to model the transfer of genes between 16 organisms: A. thaliana, B. subtilis, C.
crescentus CB15, C. elegans, D. melanogaster, D. rerio, E. coli, G. gallus, H. sapiens,
M. musculus, N. tobacum, P. falciparum, R. norvegicus, S. cerevisiae, S. coelicolor
A3, and T. thermophilus HB27. Codon usage tables for these organisms were
obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon/). We
considered every pairwise transfer of genes within these (including transfer back to
the organism itself) and modeled what percentage identity would be expected upon
codon optimization. In short, we completed the following steps: (i) Source
organism amino acid sequence—Created a random sequence of 1000 amino acids,
based on the natural occurrence rate of such amino acids in the source organism;
(ii) Source organism nucleotide sequence—For each amino acid in the source
organism amino acid sequence we randomly chose a codon that represents it,
weighting the choice by the source organism’s codon usage table; (iii) Expression
organism nucleotide sequence—For each amino acid in the source organism amino
acid sequence we randomly chose a codon that represents it, weighting the choice
by the expression organism’s codon usage table; (iv) Comparison of the Source
Organism and Expression Organism nucleotide sequences—we compare sequences
codon-by-codon to determine whether they are identical. The set of steps was

repeated 1000 times for each of the 162 pairings, yielding 256,000 simulation runs.
R code used for the simulation can be found in the Supplemental Code section.

Determination of classification criteria. To identify a suitable classification cri-
teria, we compiled a set of variables that could potentially determine whether a part
is naturally occurring (“natural”) or was produced synthetically (“synthetic”).
Initially, we considered the following variables: Percentage of rare codons (less than
2% occurrence in the host); Percentage of rare codons (less than 5% occurrence in
the host); Percentage of rare codons (less than 10% occurrence in the host);
Average codon abundancy; GC content; BLAST output variables, such as max-
imum query coverage, maximum percent identity, maximum percent identity with
query coverage greater 50%, maximum percent identity with query coverage
greater 50%, maximum percent identity with query coverage greater 85%, max-
imum percent identity with query coverage greater 95%, number of hits with query
coverage greater 50%, number of hits with query coverage greater 85%, and
number of hits with query coverage greater 95%. We also tested different combi-
nations of the above variables to assess potential multiplicative or correlative
effects.

Host codon occurrences were determined from OpenWetWare for E. coli
(http://openwetware.org/wiki/Escherichia_coli/Codon_usage) and the Kasuza
Codon Usage Database for S. cerevisiae and H. sapiens (http://www.kazusa.or.jp/
codon/).

Construction of training and test sets for empirical testing. To gain a sense of
the percentage sequence identity differences that we would observe and to test the
influence of other variables, we constructed a training set consisting of synthetic
sequences that were known to be codon optimized for expression in specific
organisms and a control set of natural sequences. A complete description of the
training and test sets is included in Supplementary Methods.

Procedure for variable reduction using random forest. To determine the most
useful set of variables that would distinguish between natural and synthetic
sequences, we applied the R package random forest (‘randomForest’—https://cran.
r-project.org/web/packages/randomForest/randomForest.pdf). Random forest is a
learning method that can be used for classification by constructing a multitude of
decision trees using a training data set. With a test set, the individual trees output
the mode of the classes. We observe that percent identity is sufficient to predict
whether a sequence occurs naturally or was made synthetically. Additional vari-
ables did not improve the classification result. Using our training set of sequences,
we identified 85% identity as the threshold. Sequences that have a higher percent
identity when performing BLASTn against the RefSeq database can be classified as
natural, while sequences with a lower percent identity are likely produced
synthetically.

Approach for nucleotide BLAST (BLASTn). To align sequences pairwise or to a
database, we used the NCBI BLAST+ suite. We calculated pairwise alignments
using the standalone version on a local machine (ftp://ftp.ncbi.nlm.nih.gov/blast/
executables/blast+/LATEST/—version 2.5.0). For alignments to a larger data base
such as RefSeq (see below), we used NCBI BLAST+ on Amazon Web Services
(https://aws.amazon.com/marketplace/pp/B00N44P7L6/ref=mkt_wir_ncbi_blast#
—version2.5.0). In both cases, since we only have nucleotide sequences in our
database and are looking for only related sequences, we use the ‘BLASTn’ algorithm
and apply following parameters: Maximum target sequences= 999,999; Expect
threshold= 1; Word size= 11 (4 for pairwise alignment); Match score= 2; Mis-
match score=−3; Gap cost – Existence= 5, Extension= 2.

We chose to perform BLASTn against the Reference Sequence (RefSeq)
database. RefSeq is maintained and provided freely by the National Center for
Biotechnology Information (NCBI) and is, to our knowledge, the most
comprehensive database of the genetic sequences found in natural organisms37,38.

Application of classification scheme to Addgene data. For the alignment of all
Addgene sequences against the RefSeq data base, we used NCBI BLAST+ on
Amazon Web Services. We ran a c3.8xlarge instance (https://aws.amazon.com/ec2/
instance-types/?nc1=h_ls) with 32 virtual CPUs and 60 GiB memory. The BLAST
+ suite contains only the tax ID for each entry. To access the kingdom and
scientific name of each hit we use the taxonomy database (ftp://ftp.ncbi.nlm.nih.
gov/blast/db/taxdb.tar.gz). We ran the BLAST+ commands directly on the Ama-
zon Web Service instance using this command line option:

blastn -query AddgeneSequenes.fasta -db refseq_genomic -evalue 1
-max_target_seqs 999999 -word_size 11 -gapopen 5 -gapextend 2 -penalty −3
-reward 2 -outfmt “6 qseqid sseqid sacc sskingdoms staxids sscinames scomnames
length evalue pident nident mismatch qcovs qcovhsp qstart qend sstart send” -out
RefSeq_AddgeneSequenes.txt.

We are grateful to Addgene for sharing their data with us for this research
project. The data was received in multiple CSV files. The Addgene data contains a
wide range of information for each plasmid in the repository. For this research
project we focused on the following information: Plasmid name/ID; The year a
plasmid was deposited with Addgene; Plasmid expression system (vector type);
Plasmid sequence; Features on the plasmid (e.g., ORFs, ribozyme binding sites,
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promotors) and the start and end position of each feature. We subsample the
available data and only considered plasmids for which a submission date, a full
sequence, and a list of annotated biological parts was provided.

Two pieces of information from the previous list needed to be cleaned for this
research project. The ‘features’ information was cleaned and summarized to
reduce the computational power that was needed to align the sequences to the
RefSeq data base. We removed all features except for ORFs. Theoretical ORFs
within plasmid sequences were detected by Addgene. Prior to June 26, 2017
(the launch date of SnapGene-powered maps), Addgene in-house software was
used to detect theoretical ORFs. An arbitrary minimum ORF length of 150
amino acids was set and start codons (ATG) were searched for in all six reading
frames. We then aligned all Addgene-identified ORFs pairwise using BLAST+.
Each sequence received a unique ID, and if two sequences had 100% query
coverage and 100% identity, then the same ID was given to the identical
sequences.

We also cleaned the plasmid expression system information by converting each
entry into one of seven simplified expression categories. This was necessary because
the information is not curated by Addgene and scientists often add more than one
expression system. This was done by making two assumptions: (1) that information
with multiple entries were most likely cloned in a lower life form and primarily
expressed in the highest life form listed; (2) that information containing viral
expression platforms were primarily intended for mammalian expression.
Supplementary Table 13 lists the full set of original categories and the
corresponding simplified expression category assigned.

Exclusion of antibiotic resistance gene sequences. Antibiotic resistances are
used differently than other genes. Notably, the requirement of every plasmid to
contain an antibiotic resistance or other selective marker means that a small
number of genes are used highly redundantly. In addition, antibiotic resistances
have been acquired by natural pathogens of high medical interest and therefore
synthetic versions of these sequences are more likely to be found in the RefSeq
database, potentially leading to false natural classification. Therefore, we removed
them from our sample. First, we retrieved the most common antibiotic resistances
from the Addgene website (http://blog.addgene.org/plasmids-101-everything-you-
need-to-know-about-antibiotic-resistance-genes) and created a list of all the fea-
tures in the Addgene database that are labeled as one of the antibiotic resistances.
We retrieved the sequences of these features and built a database that we aligned to
all other sequences from the Addgene database. If an ORF shares more than 85%
query coverage and more than 85% identity with one of the previous identifies
antibiotic resistances, then we consider it as an antibiotic resistance. With this
approach we identified 534 unique antibiotic resistance sequences in our sample,
and we excluded these sequences from further analyses.

Exclusion of sequences with query coverage between 15–85%. As described
above, in our test and training sets we classified sequences that with a more than
85% identity hit in the RefSeq data base as natural. In the Addgene data we add one
additional constraint, reflecting the usage of fusion proteins (which were not in our
training or test data). This is important because we would not want to classify an
entire sequence as natural if 50% of the sequence has 100% sequence identity,
whereas the other 50% has 0%—but this is exactly the result that would be obtained
if we ignore the query coverage (which reveals this percentage of the sequence that
is being matched).

We impose an additional requirement that genes must also have more than 85%
query coverage to be deemed natural. Sequences that have less than 15% query
coverage with any sequence in the RefSeq database, or those than result in “No
Hit”, are likely to be so unnatural (true de novo sequences) as to be considered
synthetic. As already mentioned, in our training data we observed too few instances
with low query coverage and high percentage identity, to determine a precise
tradeoff for how much query coverage would be optimal. Nevertheless, we chose an
85% query coverage cutoff as a form of robustness against misclassifications with
BLASTn. This was guided by not wanting to pick too high a level, lest we exclude
natural sequences with added tags for common purposes such as purification or
localization, which are often 20–100 base pairs (and therefore less than 10% of a
standard 1000 base pair gene). Similarly, we did not want to pick too low a level,
since BLASTn searches preferentially for highly identical regions, and thus might
cut off the end of a synthetic sequence yielding a maximal-scoring segment pair
with lower query coverage and higher percentage identity (thus falsely classified as
natural).

For sequences with less than 15% query coverage, we assume that they are fully
synthetic. This threshold is somewhat arbitrarily to reflect that longer sequences are
unlikely to be fusion proteins (and to be consistent with an upper threshold of
85%).

We hypothesized that sequences resulting in query coverages between 15 and
85% are very likely to be fusion proteins. We test this for the set of putative fusion
proteins by removing the portion of the query that successfully aligned in the first
BLAST and re-running BLAST on the remaining shortened sequence. We found
that many of the remaining sequence queries aligned with high query coverage on
the second BLAST, suggesting that they were indeed fusion proteins.

Regression analysis. For the regression analyses shown in Table 1 we used the
software package StataIC 12(details in Supplementary Code). We ran ordinary least
square regressions (OLS) for the following specifications:

1. Genetic Distance ¼ αþ β Synthetic
2. Genetic Distance ¼ αþ β Syntheticþ γGene Lengthþ

ψGene Length ´ Synthetic
3. Cross Kingdom ¼ αþ β Syntheticþ γGene Length þ

ψGene Length ´ Synthetic
In specification (4) we repeated the third specification but estimated it using a

logit regression, to reflect the binary outcome variable.
In Fig. 4 we estimate two regressions, one on synthetic genes and the other on

natural one, using the loess regression function in ggplot (details in Supplemental
Code). In each case we used a local regression of GeneticDistance on GeneLength
with a span of 0.9.

Evaluation of transgene expression. We assigned a source organism for each gene
sequence based on the organism of best BLASTn alignment. To determine source
organisms, we faced a choice of whether to use BLASTn or BLASTx (which translates
the queried nucleotide sequence into a protein sequence and searches for that). We
chose to use BLASTn for several reasons. First, the use of BLASTx would require an
additional BLAST run. Second, although protein-based BLAST strategies are
recommended for determining the structure and function of proteins encoded by
genes, BLASTx may be less accurate than BLASTn for source organism determination
because NCBI protein collections are more sparsely populated than NCBI nucleotide
collections and because protein sequences are more highly conserved. Spot testing
confirmed this, with BLASTx appearing to offer lower resolution than BLASTn for
source organism identification. In future studies, one could envision evaluating a wide
range of BLAST strategies for source organism determination, including weighting
nucleotides by codon position. In any case, we expect that these differences in source
organism assignment would be negligible if organisms were grouped by phylum as we
have done. To compare the performance of BLASTn and BLASTx in determination of
the phyla of source organisms, we manually evaluated 50 randomly chosen sequences
from the Addgene data. In 25 out of the 50 sequences, the two approaches led to
differing conclusions for the maximal-scoring segment pair (most of which had lower
%QCov and %Id scores from BLASTx than from BLASTn). Within these, however,
only 5 displayed differences in phylum.

We determined the expression category using the cleaned Addgene data for
expression system (Supplementary Table 13). We determined a representative
organism for each phylum by most common member of that phylum in the
Addgene database and obtained 16 S/18 S ribosomal RNA sequences for each
organism (see Supplementary Fig. 1).

Code availability. All the authors’ analysis code is included in the Supplementary
Information.

Our analyses were run on: R version 3.3.1 (for the codon simulation) and 3.4.1,
Python version 3.5, and Stata version IC12.

Data availability
The following data were used for this paper: Addgene plasmid data: proprietary to
Addgene, viewable but not downloadable at https://www.addgene.org/. RefSeq refer-
ence genome collection: Available at https://www.ncbi.nlm.nih.gov/refseq/. Codon
Usage Databases: Available at https://www.kazusa.or.jp/codon, and https://
openwetware.org/wiki/Escherichia_coli/Codon_usage. SILVA 16S rRNA Database:
Available at https://www.arb-silva.de/. All other data available upon request from the
authors. Machine readable versions of the data presented in the Supplementary
Information are available at https://github.com/AKunjapur/Synthetic-gene-
classification.
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